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Introduction

Computing Gröbner bases is one of the very important constituents of a computer Algebra system.
Gröbner bases provide a uni�ed approach to solving problems expressed in terms of sets of multivariate
polynomials, this has many uses in cryptography, coding theory, statistics, robotics etc.

Faugère's F4 [3] and F5 [4] are the most e�cient algorithms for computing Gröbner bases; they rely
heavily on Linear Algebra. The computation of a Gröbner basis using these algorithms can be con-
sidered as succession of Gaussian eliminations over matrices constructed from polynomials generated
by the system's input equations. Each row of the matrix corresponds to a polynomial: the columns of
the matrix represent the monomials occurring in these polynomials sorted with respect to a monomial
ordering; a row then corresponds to the coe�cients of a polynomial with respect to these monomials.
The list of polynomials [f1..fn] is represented according to the monomials [m1..mk] in a matrix of size
n× k as follows:



f1 =
∑k

i=1 α1,imi

f2 =
∑k

i=1 α2,imi

f3 =
∑k

i=1 α3,imi

...

fn =
∑k

i=1 αn,imi

→

f1
f2
f3
...
fn

m1 m2 . . . mk
α1,1 α1,2 . . . α1,k

α2,1 α2,2 . . . α2,k

α3,1 α3,2 . . . α3,k

...
...

. . .
...

αn,1 αn,2 . . . αn,k


The matrices constructed from these polynomials have very interesting properties: sparse; almost

block triangular; not necessarily full rank; all the rows are unitary; and the number of columns is
usually greater than the number of rows. The Faugère-Lachartre algorithm [1] takes advantage of
these properties in order to achieve the best e�ciency when computing a Gaussian elimination over
such matrices.

The best linear algebra packages like Atlas [14], Linbox [13] and Sage [12] are very e�cient over
dense matrices but not tuned for the matrices issued from the F4/F5 algorithms over word-size prime
�elds. To this end, the Faugère-Lachartre algorithm was designed having as the main criteria for its
e�ciency the structure of matrices occurring in Gröbner bases computations.

This internship was motivated basically by the need to provide an open source implementation
of the Faugère-Lachartre algorithm with two main goals: being e�cient on both CPU performance
and memory usage. We have used the LELA [5] library all along our implementation; our work, once
mature enough, would eventually be integrated into LELA which is available under the GNU General
Public License (GPL).

The matrices issued from Gröbner bases computations have a size varying from several megabytes
to dozens of gigabytes; this makes it crucial for any implementation of the Faugère-Lachartre algorithm
to have a high CPU and memory usage e�ciency. The performance of the program can be assured
by the use of high tuned optimizations along with e�cient use of the cache memory. Parallelization is
also considered for speeding up the computations by means of performing simultaneous operations on
many processors. Lastly, the e�cient use of memory can be achieved by strategies like early release of
data, avoiding memory fragmentation, etc.
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The LELA library has a �rst implementation of the Faugère-Lachartre algorithm; however, LELA's
implementation is not very e�cient over word-size �elds. Indeed, we will show that our implementation
can be more than 20 times faster with 4 times less memory usage than LELA's. Moreover, our
implementation is parallelizable, and with a new ordering of operations of the Faugère-Lachartre
algorithm that we have proposed, our implementation can be even more e�cient with less memory
footprint.

In this report, we �rst start by presenting the well-known Gaussian and Gauss-Jordan elimination
methods for computing row echelon and reduced row echelon forms of a matrix. We then introduce
the Structured Gaussian Elimination method and show the �rst bene�t of e�cient memory usage by
limiting writing operations to only a restrained memory area; the structured Gaussian elimination
algorithm can be 80 times faster than the naïve methods on sparse matrices. We then introduce in
details the Faugère-Lachartre algorithm. This algorithm decomposes the original matrix into four
sub-matrices whose elements originate from the list of pivot and non-pivot rows and columns, this
allows better separation of the elements following their use in the computations: some are read only
while others are used in a read/write manner. The rows' elimination steps in the Faugère-Lachartre
algorithm are based on the same idea of the structured Gaussian elimination. We then introduce
brie�y the block and parallel versions of the algorithm.

In the following chapter we list our contributions to the Faugère-Lachartre algorithm. This includes
the changes to the original method to suit our implementation along with new algorithms. We present
a new parallel algorithm for the structured Gaussian elimination method: this allows us to parallelize
the third operation (Gauss) of the Faugère-Lachartre algorithm which was not parallelized previously.

Afterwards, a new ordering of operations of Faugère-Lachartre main steps is presented; in this new
method, the reductions are performed directly and only on the non-pivot rows. We show that this new
method is indeed more e�cient than the standard Faugère-Lachartre and has less memory footprint
when only a row echelon form is required. In the experimental results, we will see that the new method
can be 5 times faster than the standard Faugère-Lachartre on some problems. This is due to the fact
that initial matrix doesn't undergo a great density change while a row echelon for is computed.

In the third chapter we report about our implementation. We start by brie�y mentioning some of the
optimization techniques used and the validation process of the results. We then introduce LELA and its
implementation of Faugère-Lachartre along with experimental results about its e�ciency. Afterwards,
we present the di�erent versions we have developed and the data structures used. The �multiline� data
structure is then introduced and we show how it enables us to achieve the best performance especially
when coupled with the block representation of the matrices. The new method that we have proposed
in the contribution section is then addressed; we show that it leads to better results than the standard
method especially on slightly dense matrices. We �nish by discussing the memory utilization and the
possibility of distributed computations in the case of very large matrices.

CPU Performance and memory usage e�ciency comparisons are made with Lachartre's original
implementation; they are presented in the Appendix A.

We conclude by �nal remarks about the overall implementation and a list of improvements and
issues to be addressed in future works.

2



Related work

As we have mentioned, the LELA library contains an initial implementation of the Faugère-Lachartre
algorithm but which is not very e�cient on word-size prime �elds.

Severin Neumann uses in [15] a di�erent method for his parallelGBC 1 library which takes advantage
of the structure of the matrices to minimize the set of operations as in Faugère-Lachartre, but di�ers
from it by performing the parallelization over the rows of the matrix and not the columns. His method
has the following main characteristics:

� Unlike Faugère-Lachartre, no pivot search is required; his algorithm does not require an analysis
of the matrix to �nd pivots, since they are predetermined by the construction of the matrix.

� The parallelization is done on the rows and not the columns. The parallel operations by column
are done by using SSE instructions.

� The matrix is not fully reduced, and the algorithm can stop after a simple row echelon form is
computed.

parallelGBC is avaialable as an open source library at https://github.com/svrnm/parallelGBC.

Note : we couldn't make performance comparisons with parallelGBC since it performs the reduction
of the matrix along with other steps while computing the Gröbner basis.

1Parallel Gröbner Basis Computation
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Gaussian Elimination in Fp
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Chapter 1

Existing Gaussian elimination

methods and Faugère-Lachartre

In this chapter we present di�erent methods for computing row echelon forms and reduced row echelon
forms using Gaussian elimination-like methods. We start by introducing the naïve Gauss and Gauss-
Jordan algorithms in section 1.1; then, in section 1.2, we present the structured Gaussian elimination
and its performance e�ciency compared to the naïve methods. A detailed description of the Faugère-
Lachartre algorithm is then presented in section 1.3 along with the block version in 1.4 and the
parallelization in 1.5.

1.1 Gaussian and Gauss-Jordan Elimination

Gaussian elimination is an algorithm used for solving systems of linear equations. It can also be used
to determine the rank of a matrix, compute its inverse (in case of nonsingular matrices), and calculate
the determinant of a matrix among other things.

Using Gaussian elimination, a matrix is reduced to what is known as a �row echelon form� by means
of elementary row operations: row multiplication, row addition and row interchanging. The resulting
echelon form is not unique, for instance, any multiple of a matrix in an echelon form is also an echelon
form. However, using a variant of the Gaussian elimination algorithm known as the Gauss-Jordan
elimination, one can reduce a matrix to its �reduced row echelon form,� or Rref; this form is unique
for every matrix.

De�nition: Row Echelon Form and Reduced Row Echelon Form (Rref)

A matrix A ∈M(n,m)(K), where K is a �eld, is in row echelon form if:

� Every empty row (a row in which all the elements are zeros) is below all non-zero rows (a row
having at least one nonzero element).

� The column index of the leading coe�cient of row i (the �rst non-zero element of a row from
the left, also called the pivot element) is strictly greater than the column index of the line just
above (the row i− 1).

� All elements below a leading entry of a row are zero elements (this is implied by the �rst two
requirements).

A matrix is in reduced row echelon form if it satis�es, in addition, the following two conditions:

� Every leading coe�cient is equal to 1.
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� Every leading coe�cient of a row is the only non-zero element in its column.

Note: Every matrix has a unique reduced row echelon form.

1.1.1 Elementary row operations

Elementary row operations are used in the Gaussian algorithm (resp. Gauss-Jordan algorithm) to
transform a matrix to its row echelon form (resp. reduced row echelon form). Elementary row oper-
ations preserve the row space of a matrix (and hence its rank), which means that the row space of a
matrix is the same as that of its row echelon or reduced row echelon form.

There are three types of elementary row operations:

� Row interchanging Ri ↔ Rj : any row i can be switched with any other row j.

� Row multiplication Ri ← c × Ri : a row is multiplied by a non-zero constant (to make rows
unitary for example).

� Row addition (or linear combination axpy) Ri ← Ri + c×Rj : each row can be replaced by the
sum of that row and the multiple of another (used basically to reduce rows by each other).

Note: For every matrix, a row echelon form (resp. reduced row echelon form) can be obtained using
a �nite number of elementary row operations.

Example

Consider the following matrix in Z/7Z:

A =

 1 2 6 0 4
0 0 5 2 1
0 0 0 0 0


This matrix is in a row echelon form because it satis�es the three conditions mentioned above:

� The second row's entry is at column index 3 (assuming that the �rst column index is 1) which
is greater than the column index of the �rst row's entry: 1.

� All the empty rows (the 3rdone in this case) are below the non-zero rows.

� All the elements below the leading coe�cients are zeros.

However, A is not in a reduced row echelon form since the leading coe�cient of the second row is
not equal to 1 and there is an element not equal to zero above the leading coe�cient of row 2. We will
show, after stating the Gauss-Jordan algorithm, how to obtain the Rref of this matrix.

1.1.2 Naïve Gaussian and Gauss-Jordan Elimination

In this section we present the naïve Gauss and Gauss-Jordan algorithms used to calculate the row
echelon form and the reduced row echelon form respectively.

Gaussian Elimination

As we have already mentioned, the Gaussian elimination algorithm is used to calculate the row echelon
form of a matrix; only elementary row operations are used to achieve this. Since we are interested in
Gaussian elimination over a �nite �eld, we will only focus on producing row echelon forms where the
rows are normalized (i.e. unitary); this makes the computations very easy since one has to take only
the additive inverse of an element to reduce one row by another.
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Algorithm 1.1 Naïve Gaussian Elimination

r ← 0
for i = 1 to m do /* for all the columns of A */

piv_found← false
forj = r + 1 to n do /* search the next pivot, place it in the right position*/

ifA[j, i] 6= 0 then
r ← r + 1
A[j, ?]↔ A[r, ?]
A[r, ?]← A[r, i]−1 ×A[r, ?] /* make row unitary */
piv_found← true

end if
if piv_found = true then

/* eliminate all the rows below by the pivot r */
for j = r + 1 ton do

A[j, ?]← A[j, ?]−A[j, i]×A[r, ?]
end if

This algorithm is pretty straight forward: we start by sweeping the matrix searching for pivots
from the left to the right; this is achieved throughout the outer for loop. Then we perform the row
reduction in two steps:

1. Searching for a pivot at column index i: we check all the rows below the last found pivot row:
of index r. The �rst row that has a leading coe�cient in that column is chosen and placed in
its �nal position (held in the r variable). Notice that we can also choose other rows with leading
coe�cients in that column index. After that, the row is made unitary, by means of multiplication
with the inverse of its leading coe�cient; the variable piv_found is set to true indicating that
the rows below can be reduced. The row at position r is now called a pivot row.

2. The second step is performed only if the �ag piv_found is set to true, which means that there
is indeed a pivot at column index i by which subsequent rows are to be reduced.

Reducing rows of indices greater than r is performed by a simple 1axpy operation: replacing a row
by the sum of that row and the multiplication of the additive inverse of the element at index i by the
pivot row at index r.

This algorithm leads indeed to a row echelon form using only elementary row operations.
From now on we consider the two operations:

� make_unitary(row): makes a row unitary by multiplying it by the inverse of its leading coe�-
cient. This operation can be also referred to as normalize.

� axpy(row1, α, row2): reduces row1by row2, by replacing row1by the sum of row1and the mul-
tiplication of row2with α. We may sometimes omit α, in this case, α is considered to be the
additive inverse of the element of row1which is located at the column index of the leading entry
of row2.

More speci�cally:

make_unitary(row) = leading_coefficient(row)−1 × row

axpy: which is equivalent to y ← α× x+ y where x and y are vectors and α is a scalar. When α is
omitted, its value is computed as following:

h = leading_column_index(row2); α = −(row1[h]).

Note : In case row2 is empty, axpy and normalize have no e�ect on their input rows.

1axpy: A X plus Y
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Gauss-Jordan Elimination

To obtain the reduced row echelon form of a matrix, the Gauss-Jordan algorithm is used. Unlike the
Gaussian-elimination which places zeros below the pivot elements working from the �rst row down to
the last row, the Gauss-Jordan algorithm places zeros below and above pivot elements. It di�ers only
slightly from the algorithm we have presented earlier in ??.

Algorithm 1.2 Gauss-Jordan Elimination

r ← 0
for i = 1 to m do /* for all the columns of A */

piv_found← false
forj = r + 1 to n do /* search the next pivot, place it in the right position*/

ifA[j, i] 6= 0 then
r ← r + 1
A[j, ?]↔ A[r, ?]
A[r, ?]← A[r, i]−1 ×A[r, ?] /* make row unitary */
piv_found← true

end if
if piv_found = true then

/* eliminate all the rows above and below by the pivot r */
for j = 0 to n do

A[j, ?]← A[j, ?]−A[j, i]×A[r, ?]
end if

Notice that the only di�erence from the Gaussian-Elimination algorithm is that we have only
changed the bounds of the second inner for loop; not only reducing (placing zeros) the rows below the
current pivot row, but going a step further and reducing the pivot rows above the current row too.

Complexity Both the Gaussian and the Gauss-Jordan elimination algorithms have a time complex-
ity of order O(n3) for n× n full rank matrices.

These two algorithms are not e�cient because at each time a pivot row is discovered, all the rows
(except the current pivot) in the matrix are reduced by this pivot which implies performing writes all
over the memory area where the matrix is stored. When working over the Z/pZ �eld for example, the
number of modular reductions becomes very limiting also. These algorithms are poorly designed to
work over sparse matrices as well, as we will see in the following sections.

1.2 Structured Gaussian Elimination

In structured Gaussian elimination, we intend to minimize writing to the whole matrix while we reduce
by a pivot row. We consider speci�cally sparse matrices for this algorithm, but it can also be perfectly
applied to dense matrices as well with slight changes.

The idea of this algorithm is to reduce a row by all the pivot rows discovered so far. If at the end
of this process, the current row is not empty, it is added to the list of pivot rows; a new row is then
processed and the same steps are repeated till all the rows are handled.

At this level, the rank of the matrix is known since all the pivots have been identi�ed.
One advantage of this method is that the writing area is limited to a small array that can �t into

the processor's cache. While reducing a row, we use a dense array to represent it. On sparse matrices,
the number of multiplications and additions while reducing the dense array by a pivot row is directly
proportional to the number of the non-zero elements of that pivot.

The penalty of copying the current sparse row to a dense temporary array and back is negligible
compared to the running time of the axpy operations. In the case of matrices over �elds of a charac-
teristic p that can be represented over 16 bits, one can use in place operations over a dense array of
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16 bits which implies performing modulo operations after each multiplication and addition. On the
other hand, a dense array of 64 bits elements can be used to �accumulate� the results of additions
and delay the modulo operations just before the dense array is copied back to the sparse row in the
original matrix. Over 16 bits, one can perform up to 231 additions in a 64 bit array accumulator before
performing the modulo reduction. The number of modulo reduction falls back to n2 because each row
is reduced only once.

To obtain the reduced row echelon form, we need to reduce the newly discovered pivot rows by
each other. The last step consists in sorting the rows by ascending column entry to obtain the �nal
reduced row echelon form.

The above steps are described in the algorithm 1.3.

Algorithm 1.3 Structured Gaussian Elimination

rank ← 0
/* loop over the rows of A, reduce rows by the newly discovered pivots */
for i = 1 to n do

copy_row_to_dense_array(A[i, ?], temp)
for j = 1 to i− 1 do

/* temp = temp�temp[head(A[j, ?])] ∗A[j, ?] */
axpy(temp, A[j, ?])

copy_dense_array_to_row(temp, A[i, ?])
if not_empty(A[i, ?]) then

rank ← rank + 1

/* reduce pivots by each other */
for i = 1 to n do

copy_row_to_dense_array(A[i, ?], temp)
/* all pivots with index greater than i and which have a column index entry greater than that of

row i*/
S = j : j > i ∧ not_empty(A[i, ?]) ∧ not_empty(A[j, ?]) ∧ head(A[j, ?]) > head(A[i, ?])
/* note: S is sorted incrementally */
for each j in S do

axpy(temp, A[j, ?])
copy_dense_array_to_row(temp, A[i, ?])

sort_rows(A)
return A

The copy_row_to_dense_array function copies a sparse/dense row of A to a dense temporary
array, this array can be, as we have already stated, of size 64 bits in the case of matrices with elements
that can be represented with 16 bits.

axpy(temp, row) performs the reduction of the dense array temp by row (cf. 1.1.2); if the pivot
row at input to this function is empty, then the function has no e�ect. If the dense array temp is
represented over 64 bits, axpy would only accumulate the products without performing the modulo
reduction each time.

copy_dense_array_to_row(temp, row) copies the elements of the dense array temp to the sparse
row row. If the elements of temp are 64 bits, then a modulo operation is performed before the elements
are stored back in row. head(row) returns the column index of the leading element of row, it returns
−1 if row is empty. not_empty(row) returns true if row contains at least one non-zero element, false
otherwise.

In the second for loop, a pivot i is reduced only by pivots of greater indices (because it was already
reduced by the rows of smaller indices in the �rst loop.) and whose leading element's column index is
greater than the leading column index of the current row's leading element.
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Algorithm 1.4 Swap sorting

column_index_to_pivot_row_set← Ø /* a map of column index to row index */
permutations_set← Ø /* the permutations used to keep track of rows */
r ← 1
real_r ← 1
for i = 1 to n do

column_index_to_pivot_row_set.add(head(A[i, ?]), i)

for each pair in column_index_to_pivot_row_set do
row_index← column_index_to_pivot_row_set[i]
swap(A[permutations_set[row_index]], A[r, ?])
/* A[r, ?] is in last position now */

/* update the permutations */
real_r ← permutations_set[r]
while r 6= permutations_set[real_r] do

real_r ← permutations_set[real_r]
t← perm[row_index]
permutations_set[row_index]← r
permutations_set[real_r]← t
r ← r + 1

Finally the function sort_rows(A) sorts the rows of the matrix according to their incrementing
leading element's column index. We use an analyze phase to construct a map of each column index and
its corresponding pivot row, and then an inplace swap between rows (useful with C++ STL vectors
for example and on matrices where it is not possible to acquire a pointer on a row but it is possible to
swap the contents of two rows e�ciently without moving the actual data around.)

This method is shown in algorithm 1.4
The above algorithm performs sorting on the rows by incrementing leading element's column index

using only swap operations between the rows. The set column_index_to_pivot_row_set is a map
where the key is the column index of a row's leading element the corresponding row's index. This map
is ordered incrementally on to the keys. The permutations_set is a map keeping track of the rows'
positions. At the beginning of the algorithm, this map is simply the identity: pointing each row index
i to i (at the beginning the row at position 5 is at position 5 indeed.)

During the actual sorting, a variable r keeps track of the position where the next pivot row is
to be inserted. The index of the next row to move to its �nal position is read: row_index =
column_index_to_pivot_row_set[i]; then this row is swapped to its �nal position r. Notice that the
actual swap is done between the row at position r and the row at position permutations_set[row_index];
this is due to the fact that when row_index is read, the row pointed by this value could have already
been swapped before: hence is at another position; this is where the permutations_set is useful: it is
used to track where each row is located at throughout the algorithm.

The second part of the algorithm takes care of updating the permutations_set map. We indicate
simply that the row located at row_index is now at the position r, however, the previous row that was
at position r is not necessarily the same at the map permutation_set; in order to get the corresponding
row in the permutation_set, we have to perform a backtracking until we reach the position of original
row, and update it to indicate that its corresponding row is now located at row_index.

1.2.1 Implementation and experimental results

We have implemented the Structured Gaussian Elimination algorithm using the LELA library (cf.
Chapter 2). We measure the running time of LELA's naïve Gaussian Elimination implementation and
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two structured Gaussian Elimination implementations: the �rst one performs modulo reductions after
each multiply/add operation in the axpy routine (O(n3) modulo reductions); the second uses a 64
bits accumulator and performs the modulo reductions only once a row is fully reduced (O(n2)modulo
reductions).

The matrices used are sparse matrices issued from actual Gröbner bases problems over the Z/65521Z
�eld. The type SparseMatrix is used to represent the matrices with elements presented with 16 bits
(unsigned short int). The rows of the matrix = or vectors =, of type SparseV ector, are internally
represented with two vectors: one holding the actual values of the elements of the sparse vector; and
the other keeping hold on the positions of these elements. The positions' vector is a vector of 32 bits
elements since the column size of the some of the matrix exceeds easily 65535. Thus, using LELA's
SparseMatrix type with these type parameters, each element requires 6 bytes of memory (2 bytes for
the value and 4 bytes for the position).

The modulo operations are performed using the the C++ �%� operator and the inverse operations
are done by LELA's internal Modular < T > .invert() routines.

The experiments were performed on an Intel(R) Core(TM) i7 CPU with a clock speed of 2.93GHz,
8MB of L3 cache and 8GB of RAM. All the running times are in seconds.

As shown in the table 1.1, the structured Gauss algorithm outperforms widely the naïve imple-
mentation (about 85 times faster). Also, using a 64 bit array accumulator to delay modulo operations
increases signi�cantly performance (~40% of running time).

Table 1.1: Structured Gaussian elimination vs naïve Gaussian elimination (seconds)

matrix dimensions density naïve

Gauss

(LELA)

Structured

Gauss

Structured

Gauss with

accumulator

kat11/mat1 716 x 1218 7,81% 0,79 0,05 0,04

kat11/mat2 2297 x 3015 6,76% 13,33 0,64 0,36

kat11/mat3 4929 x 5703 6,15% 84,32 3,25 1,86

kat13/mat3 10014 x 14110 2,97% 675,45 12,19 8,14

kat13/mat4 19331 x 25143 2,69% 3577,00 58,19 36,64

kat13/mat5 28447 x 35546 2,66% - 156,85 91,68

minrank

minors

9_9_6/mat1

1296 x 11440 100,00% - 66,02 26,24

minrank

minors

9_9_6/mat2

5380 x 22400 45,29% - 220,68 92,57

Note : notice that if these matrices were represented as dense matrices, the memory required
becomes very limiting. For example, in the Katsura 13 problem, the 4th matrix, of size (19331Ö25143),
has a size of 78 MB when represented in a sparse form. If it was represented with a dense matrix, it
would require no less than 927 MB which is almost 12 times the size of the sparse matrix.

In the table 1.2 we measure the time that is spent on each part of the structured Gauss algorithm:
copy_row_to_dense_array, axpy, copy_dense_array_to_row and sort_rows. All the modulo
operations are made the moment the dense array is copied back to the matrix, which makes this
operation takes more time compared with the other operations.

It is clear that the copying of the rows to and from the dense temporary array are lighter operations
compared to axpy. Furthermore, the running time of the sorting operation at the end of the algorithm
is negligible compared to the other operations.
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Table 1.2: Inner operations running time (seconds)

matrix copy row to

dense array

copy dense

array to row

axpy sort rows total

kat13/mat3 0,12 1,80 3,54 0,0002 8.14

kat13/mat4 0,41 6,32 17,28 0,0004 36.64

minrank

minors

9_9_6/mat1

0,04 0,25 19,88 0,0000 26.24

Although the Structured Gauss algorithm achieves signi�cant performance, it doesn't fully take
advantage of the structure of the matrices issued from Gröbner bases computation. Indeed, in addition
to the fact that matrices issued from Gröbner bases computation are generally very sparse with unitary
rows and not necessarily full rank, they are also almost block triangular which makes most of the pivots
known at the beginning of the computation.

In the following sections we present the Faugère-Lachartre algorithm which takes advantages of all
these characteristics in order to perform e�cient Gaussian elimination over such matrices.
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1.3 The Faugère-Lachartre algorithm

In this section we will present the Faugère-Lachartre algorithm used to compute row echelon forms and
reduced row echelon forms. The Faugère-Lachartre algorithm was designed speci�cally to be e�cient
on matrices generated by the F4 [3] and F5 [4] algorithms for Gröbner bases computations and which
have very special properties:

� Sparse;

� Almost block triangular;

� Not necessarily full rank (this is the main di�erence between F4 and F5);

� All the rows are unitary (i.e. �rst element from the left is equal to 1);

� The number of columns is generally greater than the number of rows.

Unlike the structured Gaussian elimination algorithm, Faugère-Lachartre (we will use the acronym FGL
from now on) takes advantage of the fact that at the beginning of the computation, a considerable
number of pivots is already known; the e�ciency of FGL relies mainly on this knowledge.

FGL separates the coe�cients of the input matrices and performs computations only on areas where
the computations are known ahead not to lead zeros elements. This is possible due to the fact that
most of the pivots are known and that the pivot columns in the Rref form would eventually become
the columns of the identity.

At the same time, this separation makes it possible to perform parallel computations on a big part
of the FGL algorithm (2 parts of 3 were paralyzed in [2] and [1]). We will show in 2.2 how to fully
parallelize the 3rd part, namely the structured Gaussian elimination.

1.3.1 Sequential Faugère-Lachartre algorithm

The FGL algorithm consists of 6 steps: 1) matrix analysis; 2) decomposition or splicing; 3) Trsm; 4)
Axpy; 5) Gauss; and �naly 6) reconstruction of the �nal matrix. We will explain these steps in full
details in the following sections.

De�nition : a pivot column is a column in which a row has its leading element.
On a given matrix, two types of columns can be identi�ed: pivot columns and non-pivot columns.

In the reduced row echelon form, the pivot columns become the columns of the identity, and the
non-pivot columns are expressed with respect to the basis of the pivot columns.

In the following sections, we denote as M0 the input matrix to FGL, of size n0 ×m0.

1.3.1.1 Analysis

The �rst step of the FGL algorithm is to identify the evident pivot columns and at the same time
the corresponding pivot rows. Indeed, for a given pivot column, there might exist several rows that
have the same leading index corresponding to the index of that column. One has the choice to use
a pivoting strategy by which one row is chosen; the chosen row is called a pivot or a pivot row. For
example, one can chose the �rst row encountered, the least/most dense row etc.

A simple one-pass sweeping of the rows' leading coe�cients is enough to determine both lists. The
list of the pivot columns indices is called Cpiv of size Npiv. The corresponding pivot rows indices is
called Rpiv of size Npiv too. The coordinates of the ith pivot are then [Rpiv[i], Cpiv[i]]. The list of the
non-pivot columns (resp. the non-pivot rows) will be called Cpiv (resp. Rpiv).

The algorithm 1.5 describes the analysis phase.
This algorithm is very lightweight if applied correctly on sparse data structures. For instance, if the

head function runs in constant time (which is the case on sparse vectors), then the algorithm requires
no more than m0 iterations to �nish the analysis step.
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Algorithm 1.5 Analysis of the matrix A of size n×m
Npiv ← 0
for i = 1 to m do

listcondidates ← {j : head(A[j, ?]) = i}
if listcondidates 6= Ø then

piv ←choose_condidate(listcondidates)
Npiv ← Npiv + 1
Cpiv[Npiv]← i
Rpiv[Npiv]← piv

end if

return Cpiv, Rpiv, Npiv

1.3.1.2 Matrix decomposition

Now that the pivot (resp. non-pivot) columns and rows are identi�ed, the initial matrix M0 can be
decomposed into 4 sub-matrices A, B, C and D as follows:

� A will hold elements from the pivot rows and columns only; these elements are indexed by the
two lists Cpiv and Rpiv. It will be upper triangular of size Npiv × Npiv and all of its diagonal
elements are equal to 1.

� B is composed of the elements of the pivot rows and the non-pivot columns: the elements indexed
by Cpiv and Rpiv. B will be of dimensions Npiv × (m0 −Npiv).

� C is the sub-matrix that will hold the elements of non-pivot rows and the pivot columns: these
elements are indexed by Rpiv and Cpiv. Its rows are unitary and will have the dimensions
(n0 −Npiv)×Npiv.

� D which will contain the elements of the non-pivot rows and the non-pivot columns will have
the dimensions (n0 −Npiv)× (m0 −Npiv).

The decomposition in 4 sub-matrices is represented in the �gure 1.3.1.

Figure 1.3.1: Decomposing into sub-matrices

This decomposition o�ers a twofold bene�t: �rst, it separates the parts of the matrix according to
nature of the operations to be performed on them; matrices A and C are only read throughout the
algorithm, while we perform reads/writes on matrices B and D. Assembling the elements in B and
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D allows us also to make e�cient computations on the vectors. Indeed, reductions can now operate
on data elements that are packed contiguously in memory; this eliminates the jumps we would have if
the elements of non-pivot columns were mixed with those of pivot columns. Second, we will see that
this con�guration is perfectly parallelizable since there are no dependencies between the columns of B
and D.

Figure 1.3.2 shows how the second matrix of the Katsura 12 problem looks like after the splicing
step. Black pixels represent non-zero elements, and white pixels represent zero elements.

Figure 1.3.2: sub-matrices of Katsura 12/matrix 2

We can notice that the matrices A and C are sparser than B and D. Furthermore, the number of
pivot rows (rows of A and B) is greater than the number of non-pivot rows.

The cost of this decomposition is of the number of non-zero elements of the original matrix; this
cost is negligible compared to the overall complexity of the algorithm -we will see however that this
can be penalizing on the block version.

After this decomposition, M0 is now equivalent to:

M0

(
A B
C D

)

1.3.1.3 Reducing the pivot rows by each other (Trsm2)

In this step, the pivot rows are reduced by each other. From a Linear Algebra point of view, this
is equivalent to computing B ← A−1 × B; A is invertible since it is upper triangular with 1s in the
diagonal. Notice that the matrix A is accessed in a read only fashion so it keeps its original density
and remains sparse, while B is accessed in a read/write mode; there is a considerable chance that B
will become denser throughout this step.

The algorithm to compute the pivot row reduction step is showed in the algorithm 1.6.

2Trsm: TRiangular Solve with Multiple right-hand sides
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Algorithm 1.6 Reducing the pivot rows by each otherA−1B

/* loop through rows of A starting from the end */
for i = Npiv − 1 downto 1 do

/* loop through elements of A[i, ?] starting from the end */
for j = Npiv downto head(A[i, ?]) + 1 do

if A[i, j] 6= 0 then
/* B[i, ?]← B[i, ?]�A[i, j]×B[j, ?] */
axpy(B[i, ?], A[i, j], B[j, ?])

end if
end for

return B

In the outer loop, it is mandatory to start from the end of the matrix down to the beginning. When
a row is reduced in B, the corresponding row in A is implicitly reduced to the identity row (although
we do not perform these operations.) Reducing a row at index i means performing axpy operations
with all the rows of indices greater than i; these rows have already become the rows of identity as
the algorithm proceeds. Notice that we do not reach the leading coe�cient in the inner loop because
otherwise, each row would get reduced by itself.

After this step, M0 is now equivalent to:

M0

(
IdNpiv

A−1 ×B

C D

)
1.3.1.4 Reducing non-pivot rows by pivot rows (Axpy3)

Once the pivots are reduced by each other, the next step consists in reducing the non-pivot rows by
the new pivot rows: the rows of C and D by the rows of the new matrices A and B. Once this step
is achieved, the matrix C becomes 0 since all its coe�cients get reduced by those of A. As in the
previous step, C is accessed in a read only mode, its coe�cients are used to perform the reductions on
the rows of D which is accessed in a read/write mode. As in the case of B, there is a high probability
that the density of D increases throughout this step. From a Linear Algebra point view, this step is
equivalent to computing D ← D − C × (A−1 ×B).

The algorithm 1.7 shows the non-pivot rows reduction.

Algorithm 1.7 Reducing non-pivot rows by pivot rows D ← D − C ×B
/* loop through rows of C */
for i = 1 to n0 −Npiv do

/* loop through elements of C[i, ?] */
for j = 0 to Npiv do

if C[i, j] 6= 0 then
/* D[i, ?]← D[i, ?]�C[i, j]×B[j, ?] */
axpy(D[i, ?], C[j, i], B[j, ?])

end if
end for

return D

An example of the reduction of the second row in the matrix D (and C) is presented in the �gure

3Axpy : A X plus Y
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1.3.3. Notice that since we started the reduction from the �rst row of C, the �rst row is now equal to
0; as we stated before, we do not actually perform this computation on the rows of C.

Figure 1.3.3: An example of the non-pivot rows reduction

The original matrix M0 is now equivalent to (w.r.t the original sub-matrices A, B, C and D):

M0

(
IdNpiv

A−1 ×B

0 D − C × (A−1 ×B)

)
1.3.1.5 Identi�cation of new pivots (Gauss)

Now that the entire matrix has been reduced by the pivot rows (though, not the same pivot rows),
new pivots must be identi�ed among the non-pivot rows and columns: the matrix D. For this purpose,
we use a slightly modi�ed version of the structured Gaussian elimination algorithm we have presented
in 1.2. We do not compute the reduced row echelon form of the matrix D, but only an echelon form.
Notice that the rows of D are not unitary and �eld inversions are thus required.

Algorithm 1.8 Compute a pseudo-row echelon for of matrix D of size (n0 −Npiv)Ö(m0 −Npiv)

rankD ← 0
/* loop over the rows of D, reduce rows on the go */
for i = 1 to (n0 −Npiv) do

normalize(D[i, ?])
copy_row_to_dense_array(D[i, ?], temp)
for j = 1 to rankD do

if head(temp) = head(D[j, ?]) then
axpy(temp, D[j, ?])

copy_dense_array_to_row(temp, D[i, ?])
normalize(D[i, ?])
if not_empty(D[i, ?]) then

rankD ← rankD + 1
sorted_insertion(i)

return rankD

The rankD variable holds the rank of the matrix D at the end of the algorithm.
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normalize makes its input row a unitary row by dividing the entire row by the multiplicative
inverse of its leading coe�cient. The copy_row_to_dense_array function copies a sparse/dense row
of the matrix to a dense temporary dense array. copy_dense_array_to_row(temp, row) copies the
elements of the dense array temp to row. axpy(temp, row) performs the reduction of the dense array
temp by row; if the pivot row at input to this function is empty, then the function has no e�ect.
not_empty(row) returns true if row contains at least one non-zero element, false otherwise.

In this algorithm, a sorting the rows is needed each time a row is fully reduced, the subsequent
rows are reduced only by pivots of the same leading column index.

After this step, the original matrix M0 is now equivalent to (w.r.t the original sub-matrices A, B,
C and D):

M0

(
IdNpiv

A−1 ×B
0 Gauss(D − C × (A−1 ×B))

)
Note : Upon this point, all the rows are pivot unitary rows. The rank of the original matrix M0 is

henceforth known and equal to Npiv+ rankD. An echelon form of the matrixM0 can be reconstructed
at this point; refer to the section 1.3.1.7 for an idea about how this can be done.

1.3.1.6 Second iteration

In order to obtain the reduced row echelon form, a second iteration of the algorithm must be applied.
During this second iteration the newly discovered pivot rows in the matrix D are reduced by each
other; this corresponds to the Trsm step we have presented earlier. Furthermore, the rows in the new
matrix B (which were part of the original pivots discovered in the matrix M0) must now be reduced
by the newly discovered pivots in the matrix D; this step is the Axpy step we have presented before.

We start by performing the analysis step on the matrix D; we now have lists CpivD
and RpivD

corresponding the column and row indices of the pivots in D. Notice that D contains only pivot rows
or empty rows: because we have reduced it to an echelon form in the previous step.

Now we proceed to the splicing step, in which the matrix D is spliced to two matrices D1 and
D2. D1 is the matrix containing the elements from the pivot columns and the pivot rows of D; these
elements are located by the tuple [RpivD

[i], CpivD
[i]]. D2 contains the elements issued from the pivot

rows and the non-pivot columns of D. Likewise, B is decomposed according to the list CpivD
to B1 and

B2. B1 contains the elements of B whose column indices are in CpivD and B2 contains the elements
of B whose columns are not in CpivD

.

We can now apply the same reductions Trsm and Axpy that we have presented earlier to these
new matrices. This whole process corresponds to the reduction of the pivot rows by each other.

1.3.1.7 Matrix reconstruction

At this point it is possible to reconstruct the reduced row echelon form of the original matrix M0 (or
a row echelon form in case we have stopped in the Gauss(D) step). The �nal columns of the Rref
of the matrix M0 are now in the sub-matrices B2 and D2 in addition to the identity columns of A
and D1. The algorithm 1.9 shows the process of reconstructing the reduced echelon form from the
sub-matrices B2 and D2 (C is now equal to 0 and A to IdNpiv ).
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Algorithm 1.9 Reduced echelon form reconstruction

// CpivD
, RpivD

← Analyse(D)
piv_col_to_row ← Ø
/* update the map piv_col_to_row to contain pivot rows from the matrix A and the new pivots of
D1 */
for i = 1 to Npiv

/* in A, the next pivot is at row i and is originated from column Cpiv[i] in M0 */
piv_col_to_row[Cpiv[i]]← i

/* Add the new pivots in D1 */
for i = 1 to rankD do

/* get where in M0, the column i in B (and D) has originated */
idx_in_B = CpivD

[i]

idx_in_A = Cpiv[idx_in_B]
piv_col_to_row[idx_in_A] = Npiv + i

/* remap the non-pivot columns from B2, D2 to the original matrix M0 */
for i = 0 to #Cpiv do

idx_in_B = Cpiv[i]

idx_in_B2 = CpivD
[idx_in_B]

Cpiv[idx_in_B] = idx_in_B2 /* points the non-pivot columns of M0 to the �nal column in
B2 */

/* reconstruct the actual matrix */
Mres ← 0(n,m)

nextpivot ← 1
L← (B2

D2 ) /* L is the concatenation of the rows of B2 and D2 in this order */

for each pair p in piv_col_to_row do
/* p is a tuple of column index → row index */
Mres[nextpivot][p.first]← 1 /* adds identity column */

/* add the actual elements of the rows of B2 and D2 */
for i = 1 to (m0 −Npiv −NpivD

) do

Mres[nextpivot][Cpiv[i])]← L[p.second][i]

return Mres

These lists of pivot columns and rows in the matrix D are denoted CpivD
, RpivD

respectively as
explained in the analysis section. Then a new map piv_col_to_row is created to map the positions of
the original columns in the matrix M0 to the corresponding pivot rows in matrices B2 and D2 which
are concatenated to form a bigger matrix L of size n0 × (m0 −Npiv −NpivD

).

The non-pivot columns list is updated so that it points to the column index in the matrix B2
rather than that of B; indeed, the new elements of the Rref form are in the matrices B2 and D2 and
not in B and D anymore. The number of writes performed is proportional to the number of non-zero
elements in the matrices B2 and D2.

The following schema in �gure 1.3.4 shows the steps of the algorithm. On the second iteration, the
matrices A, B, C and D are replaced by the matrices D1, D2, B1 and B2 respectively. At the end of
the second iteration, the reduced row echelon form can be reconstructed.
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Figure 1.3.4: Steps of the Faugère-Lachartre algorithm

The �gure 1.3.5 shows how the reduced row echelon form of the matrix katsura12 mat2 looks like.

Figure 1.3.5: Reduced row echelon form of katsura 12 matrix 2

1.4 Block version of Faugère-Lachartre

Having a block version of the FGL algorithm has multiple bene�ts: taking advantage of modern
processors architecture by packing data into blocks that can �t into the processor's cache memory,
and maintaining an optimal stream of data. Also, the operations on the Cpiv columns are independent
which means that these columns can be handled in parallel provided the data in these columns are
separated; this leads naturally to a block representation which separates the elements of the matrix
on a columns basis.

The data structures of this version are well presented in [2] section 4. We mention here only that
the blocks are a list of rows, where every row may have two formats: a �sparse format,� or a �hybrid
format.� A row in a sparse format is a list of position-value tuples; whereas a hybrid row is simply a
dense array containing the elements (zero and non-zero elements) of that row. There is a threshold
that is used to de�ne if a row should be in a sparse or hybrid format. For example, if the threshold
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Figure 1.4.1: Block representation of the sub-matrices A, B, C and D

is 50%, then a row that has more elements than 50% of the matrix column size is stored in a dense
format.

Blocks of the matrix A and C are represented from right to left then from down to top, while those
of B and D are from down to top then from left to right as shown in the �gure 1.4.1. Elements inside
the blocks themselves follow a similar con�guration: from right to left the from down to top for the
blocks of A and C, and from left to right then from down to top for the blocks of B and D.

Performing the Trsm and Axpy operations on block matrices is achieved throughout two levels:
matrix level operations operating on blocks (outer block operations), and block level operations that
operate on the elements inside blocks (inner block operations).

1.4.1 Inner block operations

Inner block operations are of two types: reducing a block by another block (Axpyblock), or reducing
the block by itself (Trsmblock). These are exactly the same operation we have already presented in
1.3.1.3 and 1.3.1.4. In fact, the blocks themselves can be considered as small matrices; a reduction
between two di�erent blocks is analogous to the Axpy operation performed between the sub-matrices
A, B, C and D. The only di�erence is that one has to take into account now the nature of the rows
being reduced: sparse or hybrid, and the disposition of these rows inside a block.

The algorithm 1.10 is a modi�ed version of the Trsm algorithm 1.6 that acts on the block scale
with hybrid rows.
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Algorithm 1.11 Block Trsm (A−1B)

/* loop through the columns of blocks of B */
for i = 1 to nb_block_columns_B do

/* loop through the rows of blocks of A */
for j = 1 to nb_block_rows_A do

/* reduce block B[i, j] by all the blocks before in the same column */
for k = 1 to j − 1 do

/*B is accessed in column major order*/
Axpyblock(A[j, k], B[i, k], B[i, j])

/* reduce B[i, j] by itself */
Trsmblock(A[j, j], B[i, j])

return B

Algorithm 1.10 Trsmblock: reduce BlockB by upper tringular BlockA
for i = 2 to Block_height(BlockA) do

/* rows are listed from down to top */
temp←hybrid_to_dense(BlockB [i, ?])
for j = 1 to head(blockA[i, ?])+1 do

/* elements liste from right to left in blockA */
if A[i, j] 6= 0 then

/* temp← temp�BlockA[i, j]×BlockB [j, ?] */
if density(BlockB [j, ?])< threshold then

sparse_axpy(temp, BlockA[i, j], blockB [j, ?])
else

dense_axpy(temp, BlockA[i, j], blockB [j, ?])
BlockB [i, ?]←dense_to_hybrid(temp)

return BlockB

The function hybrid_to_dense copies a hybrid row to a dense array, whereas dense_to_hybrid
performs the opposite operation: copies a dense array back to a hybrid row with a sparse representation
if the density of temp is less than the threshold. sparse_axpy and dense_axpy perform rows reduction
in a sparse or a dense mode. Some optimizations can be taken advantage of in the case of dense_axpy
since the data is contiguous and no index computations or jumps are needed throughout the operation.
Likewise, the Axpyblock operation di�ers from the original Axpy by the hybrid aspect of the rows; the
way the rows are organized inside a block must be taken into account also.

1.4.2 Outer block operations

The organization of the blocks inside the sub-matrices A, B, C and D allows us to perform the Trsm
and Axpy operations on these matrices in a very intuitive manner. The algorithm 1.11 shows the
Trsm operation considering only block operations over the sub-matrices A and B.

The Axpy operation considering only block operations is shown in the algorithm 1.12.

As in the case of rows reduction, in both algorithms, a dense block can be used during the reduction
by other blocks and then written back to matrix once fully reduced.
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Algorithm 1.12 Block Axpy (D − CB)
/* loop through the columns of blocks of D */
for i = 1 to nb_block_columns_D do

/* loop through the rows of blocks of C */
for j = 1 to nb_block_rows_C do

/* reduce block D[i, j] by all the blocks in the column i of B */
for k = 1 to nb_block_columns_C do

Axpyblock(C[j, k], B[i, k], D[i, j])

return D

1.4.3 Block hybrid Gaussian elimination

The authors in [2, 1] have adapted the Gaussian elimination algorithm over the matrix D that we have
presented in 1.3.1.5 to the block representation of the matrices.

The idea is to consider the matrix D as a matrix with one row of blocks and as many columns
as the original one: namely

⌈
#Cpiv/block_width_D

⌉
. A dense matrix P of size #Rpiv ×#Rpiv and

initially equivalent to the identity is used to keep track of the operations performed on the blocks as
the algorithm proceeds. A sequential Gaussian elimination method is then used over the blocks one by
one starting from the left to the right. The matrix P is used to keep track of the di�erent reductions
performed on the blocks Di; then, when reducing the block Di+1, we �rst update it by a left multiply
with the matrix P in order to propagate the pending operations from the previous blocks; P is then
concatenated again to the block Di+1 and the Gaussian elimination is once again performed on this
block one and so on.

Check [1] for a full description of this method.

1.5 Parallelization

The Trsm (A−1 × B) and Axpy (D − C × (A−1 × B)) operations can be made parallel since there
is no data dependency between the columns of the matrices B and D. The block organization of the
matrices makes this perfectly adequate to parallelize. We denote the columns of blocks of B as Bi and
those of D as Di then the basic parallelizable operations are:

� Trsmi: takes as input a column of blocks Bi, the matrix A and returns as output A−1 ×Bi.

� Axpyi: computes Di − C ×Bi given the matrix C and the columns of blocks Bi and Di.

Clearly there is an ordering on these operations; the Trsmi (resp. Axpyi) operations are completely
independent one another for di�erent i; however, for a given column block index i, the Trsmi operation
must precede Axpyi because Axpyi uses as input the output of Trsmi.

For the Gauss operation on the matrix D, a dense matrix P is used to keep track of the operations
performed on the blocks as they get reduced. Before each reduction, the operations are propagated
on the current block using the pseudo inverse matrix P then the block concatenated to P is reduced.
The same sequential block hybrid Gaussian elimination presented in 1.4.3 is used.

Priority rules are de�ned between the operations Trsmi, Axpyi and Gaussi along with synchro-
nization points used enforce the priority rules. The synchronization points are:

� S1(from Analysis and decomposition to Trsm): the analysis and decomposition steps must be
�nished before Trsm can start;

� S2(from Trsm to Axpy): to compute Axpyi, the computation of Trsmi must be completed;

� S3(from Axpy to Gauss): to apply the reduction Gaussi, Axpyi must be completed as well as
the operation Gaussj for all j between 1 and i− 1;
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� S4(from theGauss step to the reconstruction step): all the operations of type Gauss must be
completed before the �nal matrix can be reconstructed.

For the full version of the parallel algorithm, refer to [2].
Note : In [2, 1], the Gauss step is sequential, the operations Gaussi are interposed with Trsmi

and Axpyi but they are sequential nonetheless.
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Chapter 2

Contributions

We present in this chapter a new parallel algorithm for the structured Gaussian elimination method
and show some experimental results about its e�ciency in 2.2. In section 2.3 we present a new ordering
of operations of Faugèure-Lachartre and we show that this method is generally more e�cient than the
standard algorithm when computing row echelon forms on full rank matrices.

2.1 Modi�cations to the Standard Faugère-Lachartre Method

Throughout our implementation we have used the multiline data structure that we will present in
chapter 3. The multiline data structure is very e�cient but not suited when rows' ordering is involved;
this is the case of the Gauss step in the Faugère-Lachartre algorithm. To this end, we propose a
modi�cation to this algorithm that does not require the reordering of the rows.

2.1.1 Identi�cation of new pivots (Gauss)

We use a slightly modi�ed version of the structured Gaussian elimination algorithm we have presented
in 1.2 to compute an echelon form of the matrix D in order to identify the new pivots. Notice that
the rows of D are not unitary and �eld inversions are thus required.

Algorithm 2.1 Compute a pseudo-row echelon for of matrix D of size n×m
rankD ← 0
/* loop over the rows of D, reduce rows on the go */
for i = 1 to n do

normalize(D[i, ?])
copy_row_to_dense_array(D[i, ?], temp)
for j = 1 to i− 1 do

axpy(temp, D[j, ?])

copy_dense_array_to_row(temp, D[i, ?])
normalize(D[i, ?])
if not_empty(D[i, ?]) then

rankD ← rankD + 1

return rankD

We do not sort the rows to obtain a correct echelon form because this sorting step will be performed
during the next step of the algorithm involving analysis. The rankD variable holds the rank of the
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matrix D at the end of the algorithm.
Note : In [1], the author performs this Gaussian elimination only over rows which have the same

leading coe�cient index as a pivot row. This has indeed an advantage if only the echelon form of the
original matrix is required. In the case where a reduced echelon form is required, the computations
that we perform when reducing by all the pivots in the algorithm 2.1 are simply subtracted from the
overall work to be performed in the next steps.

2.1.2 Block hybrid Gaussian elimination

We have dropped using this Gaussian elimination over hybrid blocks (c.f. 1.4.3) and chosen to copy
the block matrix back to a row representation and apply our classical structured Gaussian elimination
presented in the previous section. Our choice is motivated by the following arguments:

� The fact that the matrix P requires more space (n0 −Npiv)
2 of the size of the elements.

� Our special data structure (the multiline vector that we will present in chapter 3) which makes
ordering individual rows very penalizing.

� This algorithm is not parallelizable; we show in 2.2 how our structured Gaussian elimination over
rows can be parallelized.

We should also notice that the copying time compared to the overall structured Gaussian elimination
computation is generally negligible.

2.2 Parallel Structured Gaussian elimination

In this section we present a parallel algorithm of the sequential structured Gaussian elimination we
have presented in 1.2. In the original Faugère-Lachartre parallel algorithm, the two steps Trsm and
Axpy are parallelized but not the Gauss step. To this end, we have developed a parallel version of the
structured Gaussian elimination. This algorithm is designed to work over shared memory architectures.

The idea behind this algorithm is that in the structured Gaussian elimination, a row i is replaced
by a linear relation in which the rows of index j (where j ≤ i) are involved. This can be expressed as
follows:

rowi ← rowi +
∑i−1

j=1 αjrowj

At step i of the algorithm, the rows from 1 to i−1 have already been reduced and are in their �nal
image w.r.t. the row echelon form we are computing.

If we dispose of p processors (or threads) then at step i, the rows from i to i+p can, in a large part,
be reduced in parallel by pivots up to i − 1 since these pivots are only read and are already in their
�nal form. Once all the rows between i and i+ p have been reduced by pivots of indices 1 to i− 1, the
row i+ offset must wait for all the rows from i to i+ offset− 1 in order be fully reduced. We solve
this problem by having a priority queue, waitingq , that holds the rows which have been reduced by
the pivots {0..i− 1} but are waiting for other pivots to be fully reduced.

All the threads have a shared variable indicating the last fully reduced pivot: last_pivot; any row
can be reduced by the pivots from 1 to last_pivot. The threads then spin over all the rows, fetching
the next available row to reduce and reducing it up to last_pivot. If the current row has an index
equal to last_pivot+1, it means that the current row is fully reduced and hence it is added to the list
of fully reduced rows; otherwise, it is added to waitingq. The other threads can now fetch elements
from the waitingq and �nish their reduction up to last_pivot which should have changed its value
since the last time the current row was added to waitingq.

These steps are described in the algorithm 2.2.
We start by reducing several rows sequentially to avoid high contention on the waiting queue.

This is done by a call to echelonizeRowsUpTo_Sequential which is a simple call to the sequential
structured Gaussian elimination. Then several shared variables between all the threads are declared:
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Algorithm 2.2 Parallel structured Gaussian elimination of a matrix An,m

/* echelonize several rows at the beginning */
echelonizeRowsUpTo_Sequential(A, 0, p);

shared:
last_pivot /* index of the last fully reduced pivot */
next_row_to_reduce /* index of the next available row to reduce in the matrix*/
waitingq /* min-priority heap: list of not fully reduced rows */

private:
local_last_pivot /* rows are reduced up to this index */
row_to_reduce /* candidate row to reduce */
start_from /* pivot from which to start the reduction */

while (true) do in parallel
if last_pivot = n then /* termination condition */

break

local_last_pivot← last_pivot /* no synchronization needed */
lock(mutex) /* start of critical section */
if not_empty(waitingq) then

/* fetch smallest row index from waiting list */
elt← waitingq.fetch_smallest()
row_to_reduce← elt.row
start_from← elt.last_pivot_reduced_by + 1

else /* fetch next available row in the matrix */
row_to_reduce← next_row_to_reduce
next_row_to_reduced← new_row_to_reduce+ 1
start_from← 0

unlock(mutex) /* end of critical section */

copy_row_to_dense_array(A[row_to_reduce], temp)
for i = from_pivot to local_last_pivot do

/* temp = temp�temp[head(A[i, ?])]−1 ×A[i] */
axpy(temp, A[i]);

copy_dense_array_to_row(temp, A[row_to_reduce])

lock(lutex)
if row_to_reduce = local_last_pivot+ 1 then /* row_to_reduce fully reduced */

last_pivot← last_pivot+ 1
else

/* adds this row to the waiting list specifying the row index and the last pivot it was reduced by */
waitingq.add({row_to_reduce, last_local_pivot})

unlock(mutex)

end wile

sort_rows(A)

27



� last_pivot: this variable keeps track of the index of the last fully reduced pivot.

� next_row_to_reduce: the next not reduced row in the original matrix. This is incremented
atomically each time a row is fetched (goes from 1 to n).

� waitingq: a minimum priority heap that holds track of the rows on which we have started reduc-
tion but are not fully reduced yet. These are rows of indices [last_pivot+2..next_row_to_reduce[.

Each thread has a list of private variables also:

� local_last_pivot: holds the local value of the shared variable last_pivot.

� row_to_reduce: this variable can be assigned the shared variable next_row_to_reduce if
waitingq is empty, otherwise, it holds the index of the smallest waiting row in waitingq.

� start_from: indicates the index of the pivot from which to start the reduction. If the row to
be reduced is fetched from the matrix A, then this variable is assigned the value 1 (indicating to
start the reduction from the �rst row); however, if the row is fetched from the waiting list, then
this variable indicates that the reduction should start from the last pivot index that the waiting
row was reduced by.

The threads can now fetch rows to reduce from the matrix or the waiting queue. Each thread starts
by checking if there are other rows not fully reduced, indicated by the condition last_pivot < n; this
is also the termination criteria for each thread.

If the termination condition is not met, the thread fetches the index of the next row to handle.
In case the waiting queue is not empty, then the thread �helps out� by �nishing the reduction of the
waiting rows. The function waitingq.fetch_smallest() pops an element from waitingq (removing it
from the queue); the fetched element contains the index of the row to reduce and the index of the last
pivot it was reduced by. If, on the other hand, waitingq is empty, the index of the row to reduce is
fetched from the shared variable next_row_to_reduce and the start_from is set to 1 indicating to
start reducing this row by all the pivots up to last_pivot. The shared variable next_row_to_reduce
is then incremented so that the other threads can pick a new row from the matrix.

All the above operations must be synchronized since they handle shared resources: waitingq,
next_row_to_reduce. The functions lock and unlock are used to achieve this synchronization over a
shared mutex passed as input.

Once the index of the row to reduce and the interval of the pivots to be used in the reduc-
tion are known, the actual reduction can be now performed. We �rst start by copying the row
A[row_to_reduce] to a temporary dense array temp. Then we perform axpy operations over temp
and all the rows in the interval [start_from, local_last_pivot]. temp is then copied back to the row
A[row_to_reduce].

Notice that there is no need of any synchronization during this step. Indeed, any pivot with an index
less that last_pivot is accessed in a read only mode and hence can be used by all the threads during
the axpy computations. This has also an advantage since the pivots can be kept in the processors'
cache for faster access.

Furthermore, the rows pointed by the private variable row_to_reduce are also ensured to be
di�erent for each thread since the access to waitingq and next_row_to_reduce is synchronized; each
time a thread extracts the next row to reduce, it whether removes it from the waitingq or increments
the next_row_to_reduce variable: this ensures that at any given time, no thread is writing to a row
used by another thread.

Once a row is reduced and written back to the matrix, it can now be in two states: fully reduced
or not fully reduced. A row i is fully reduced only if it was reduced by pivots up to i− 1; to this end,
we check if row_to_reduce is equal to local_last_pivot + 1, if it is the case, then we increment the
value of last_pivot to indicate that reduction can now include the current row as a pivot. However,
if the index of the row is not equal to local_last_pivot + 1, then we add its index and the index of
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the last pivot it was reduced by to the waiting queue. These operations must also be synchronized to
ensure the integrity of the shared variables.

Sorting the rows according the leading entries is then required to obtain the row echelon form of
the matrix. As we have shown in 1.4, this is negligible compared to the total running time of the
overall algorithm.

Note on load balancing

The actual algorithm as presented can entail a very severe unequal load balancing between the threads.
Indeed, a thread can get �stuck� reducing rows in the waitingq while the other threads advance over
the rows of the matrix and pile them up in the waitingq . To avoid such situation, we add �ags to
indicate when a thread should check the waiting list and when it can reduce rows from the matrix.
For example, a thread that reduced a row completely is set to check the waiting list immediately since
it has just added a new pivot and other rows could be waiting for this pivot. We also impose that a
thread which adds t consecutive times to the waitingq should help with the waiting rows rather than
fetching new rows from the matrix.

Note on synchronization

Ideally, more �ne-grained synchronization should be used to minimize waiting times. The waitingq
would be implemented as an independent object assuring synchronization over its add, fetch_smallest
and not_empty methods using spin locks preferably; these operations take very short time to execute
and spin locks can ensure that the threads would simply spin waiting for the lock to be released instead
of enduring a context switch had Mutexes been used. The same goes for the other synchronization
parts of the algorithm.

2.2.1 Experimental results

We have implemented this algorithm in our parallel Faugère-Lachartre version. We used the multi-
line data structure to represent the rows of the matrices. Notice that at the end of the Axpy step,
the matrix D becomes very dense; in the following experiment, the matrix D of the problem min-
rank_minors_9_9_6 becomes almost 100% dense after the Axpy step. This means that most of the
threads' running time is spent on the axpy operations and hence less thread communication/waiting
is entailed. On sparse matrices, communication time could decrease greatly the performance of this
algorithm.

The speedups achieved with di�erent number of threads are showed in table 2.1 and the corre-
sponding e�ciency in table 2.2.

Note : speedupp = Sequential running time
Parallel running timep

,efficiencyp =
speedupp

p where p is the number of threads.

The experiments were performed on an Intel(R) Xeon(R) X5677 CPU with a clock speed of
3.47GHz, 12MB of L3 cache and 144GB of RAM.
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Table 2.1: Speedup of parallel structured Gaussian elimination

matrix 2 threads 4 threads 8 threads 12 threads 16 threads

minrank minors

9_9_6/mat1

1.90 3.69 6.80 5.62 5.88

mr 9_9_6/mat2 1.85 3.59 5.68 4.68 4.55
mr 9_9_6/mat3 1.87 3.38 5.70 4.95 5.19
mr 9_9_6/mat4 1.89 3.70 5.57 5.03 5.28
mr 9_9_6/mat5 1.90 3.69 5.55 4.99 5.36
mr 9_9_6/mat6 1.88 3.86 5.83 5.23 5.66
mr 9_9_6/mat7 1.88 3.72 5.57 4.97 5.40
mr 9_9_6/mat8 1.91 3.63 5.30 4.58 4.46

Table 2.2: E�ciency of parallel structured Gaussian elimination

matrix 2 threads 4 threads 8 threads 12 threads 16 threads

minrank minors

9_9_6/mat1

94.85% 92.14% 84.94% 46.81% 36.74%

mr 9_9_6/mat2 92.65% 89.79% 70.94% 39.01% 28.41%
mr 9_9_6/mat3 93.31% 84.44% 71.30% 41.26% 32.44%
mr 9_9_6/mat4 94.31% 92.48% 69.59% 41.91% 33.01%
mr 9_9_6/mat5 94.84% 92.22% 69.39% 41.56% 33.51%
mr 9_9_6/mat6 94.07% 96.47% 72.82% 43.60% 35.37%
mr 9_9_6/mat7 93.97% 92.90% 69.57% 41.45% 33.77%
mr 9_9_6/mat8 95.44% 90.64% 66.19% 38.15% 27.85%

From the results in table 2.1 we notice that the best speedup is achieved by 8 threads, and then it
decreases beyond that. This can be explained by the high concurrency and waiting times due to the
use of coarse-grained synchronization used in the above algorithm: threads �nish faster and contend
over the waiting list.

The e�ciency, however, is around 87% and 95% with 2 or 4 threads but decreases when we use
more threads. Indeed, with 2 or 4 threads, the amount of work spent on the actual axpy operations
is more important than that spent on the critical sections. The best e�cacity/speedup is obtained
with 8 threads. Again, to avoid such speedup degradation, it is paramount to use more �ne-grained
synchronization constructs and a more robust load balancing strategy so that the threads would have
equal amount of work between the reduction of fresh rows from the matrix on one hand, and the
reduction of the rows in the waiting queue on the other hand.

2.3 A New Ordering Of Operations For Faugère-Lachartre

In the original Faugère-Lachartre algorithm, when the number of the evident pivots (rows of the sub-
matrices A and B) is large compared to the number of the non-pivots (rows of C and D), most of the
work is spent reducing the evident pivots by each other: the Trsm step (A−1×B). For instance, in [2],
we can notice that the FGb library [6] outperforms signi�cantly Faugère-Lacharte on the last matrices
which are usually almost quasi-triangular (triangular with few more rows) with a running time scale
of 10 to 50.

Applying the Trsm step is not strictly required if one is only interested by computing a row echelon
form. Indeed, computing A−1×B is only required when we are interested by the reduced row echelon
form: inserting zeros below and above the pivots' leading elements. For the row echelon form, only
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inserting zeros below the pivot's leading elements is required; this is equivalent to performing reductions
over the rows of sub-matrices C and D only.

We present in what follows a method that is based on the original Faugère-Lachartre algorithm,
but in which we perform reductions directly on the non-pivot rows. We show that, in case only a row
echelon form is required, this new method outperforms the old method (Trsm � Axpy - Gauss) on
full rank matrices: e.g. matrices issued from the F5 algorithm.

Besides the performance bene�ts, the density of the row echelon form computed by this new method
does not vary greatly from that of the input matrix leading to rather small size matrices; this method
has also less memory footprint than the original Faugère-Lachartre algorithm.

2.3.1 Sketch of the new method

As in Faugère-Lachartre, we separate the elements of the original matrix M0 into 4 sub-matrices A,
B, C and D. Afterwards, we reduce the rows of C by the pivots of A while re�ecting these reductions
on D at the same time. Notice that the reduction of C and D in this case is di�erent from the Axpy
step of the original algorithm; in the original Axpy step, A was already equivalent to IdNpiv

which is
not the case this time.

2.3.1.1 Non-pivot reduction (C and D)

After the analysis and decomposition steps 1.5, we perform the reduction of C and D at the same time
as presented in the algorithm 2.3. The matrix is supposed to be represented by rows.

Algorithm 2.3 Reduce C and D

/* loop over the rows of C and D */
for i = 1 to n0 −Npiv do

copy_row_to_dense_array(C[i, ?], tempC)
copy_row_to_dense_array(D[i, ?], tempD)
/* loop over the elements of row tempC */
for j = 1 to Npiv do

if tempC [j] 6= 0 then
/* tempC = tempC � tempC [j]×A[j, ?] */
axpy(tempC , tempc[j], A[j, ?])

/* tempD = tempD � tempC [j]×B[j, ?] */
axpy(tempD, tempC [j], B[j, ?])

copy_dense_array_to_row(tempD, D[i, ?])

Unlike the original Axpy algorithm, reductions are now performed on the rows of C at the same
time as those of D. We loop through the rows of C and D (order is not important) and start by
copying the rows to temporary dense arrays, tempC and tempD. After that, we step through all the
non-zero elements in tempC : these are the coe�cients by which we will reduce the rows of D. Notice,
however, that these scalars change as we advance through the inner loop: tempC is now being reduced
at the same time as tempD. axpy is then applied on both rows of C and D, the coe�cient tempC [j]
is used in both operations.

At the end of the inner loop, we write back the tempD array to the corresponding row in D using
the function copy_dense_array_to_row. We do not perform any writing on C because its elements
are not of any use anymore.
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2.3.1.2 Non-pivot block reduction of C and D

Over block matrices, it is natural to make the reduction of C and D conform to the way matrices are
represented. However, taking advantage of this block disposition comes at a cost: we cannot make
use of the �ephemeral� nature of the elements of C anymore. In the previous algorithm over rows, we
never write back to C; this is not the case anymore if the matrix C is represented by blocks.

In what follows, we consider the same block disposition as in the original block version of Faugère-
Lachartre as mentionned in 1.4.1.

In the block version, we have to reduce completely all the rows in a given block before reducing the
rows of the next block. However, unlike blocks of D, where there is no dependency on the columns, on
C, the operations on the blocks at the left a�ect all the blocks on their right; this means that operations
must be carried out as we go through blocks from left to right. This is close to the technique used in
the Gauss step of the original Faugère-Lachartre algorithm where a dense matrix P is used to save the
operations to carry out while the algorithm advances from left to right.

Furthermore, reducing matrices C and D at the same time involves a lot of writing to the matrix
D: a block of D is reduced on average nb_cols_C times. Thus, we have to reduce the matrix C
separately and save the coe�cients back in order to use them for the reduction of D. The reduction
of D is then equivalent to performing the block version of Axpy .

The algorithm 2.4 describes the block reduction of C.

Algorithm 2.4 Reduce C - block

/* for all the rows of blocks in C */
for i = 1 to nb_block_rows_C do

/* for all the blocks in the row C[i] */
/* C blocks are numbered from right to left, must start from the end */
for j = nb_block_cols_C down to 1 do

/* carry out the reductions from the previous block */
for k = nb_block_cols_C down to j + 1 do

Axpy′block(A[k, j], C[i, k], C[i, j])

/* reduce the actual block */
Trsm′block(A[j, j], C[i, j])

return C

nb_block_rows_C(resp. nb_block_cols_C) represents the number of block rows (resp. the num-
ber of block columns) of the matrix C. The Axpyblock' and Trsmblock' are a slight variation of the
Axpyblock and Trsmblock algorithms; the elements inside the blocks of C are not organized the same
way as those of B and D (they are listed from right to left whereas those of B and D are from left to
right), this is the only modi�cation in the Axpyblock' and Trsmblock' that is required for this algorithm.
The matrix C becomes very dense after this step (from 70% to 95% in our experiments.) This is an
e�ciency downfall compared to the previous algorithm over rows. First there is the overhead of writing
the coe�cients back to the matrix and then the fact that any block at index i is read i times in order
to reduce subsequent blocks. Notice that we save the elements used in the inner block axpy operations
back to the blocks of C.

We will show in the experimental results that the block version of this algorithm is indeed less
e�cient than the non-block version. We solve this by applying a reduction over the rows of C, copy
C to a block matrix Cblock, and then perform Axpy over Cblock and D; this is actually much more
e�cient than an all-block or an all-non-block implementation.
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2.3.1.3 Parallelization of the non-pivot reduction step

Parallelizing the non-pivot reduction step is trivial also, whether the matric is a row matrix or a block
matrix, there is no dependency between the rows of C. This makes parallelizing this step equivalent
to assigning each row (or row of blocks) to a thread without any synchronization involved.

2.3.1.4 Row echelon form reconstruction

The new pivots can now be located in the matrix D with a Gaussian elimination as shown in 2.1.1.
Reconstructing a row echelon form is very similar to the reconstruction step we have presented in
1.3.1.7 with a few di�erences:

� reconstructing the indices' maps of the non-pivot columns is now more intuitive since we have
only to locate the new pivot rows in D and their corresponding columns (no B2 or D2 indexes
are involved);

� the coe�cients of A along with those of B and D are now included in the �nal matrix.

2.3.1.5 Reduced row echelon form with the new method

The reduced row echelon form can also be computed using this new method. A second iteration
is then required as in the original algorithm. The matrix we have just reconstructed �that we call
M0_echelon� during the step 2.3.1.4 is now decomposed into 2 sub-matrices A' and B'.In fact, the
matrix is decomposed exactly as in the original algorithm to the 4 sub-matrices A', B', C' and D';
however, since M0_echelon is already in a row echelon form, the sub matrices C' and D' have whether
0 rows if M0_echelon is a full rank matrix, or are matrices with only empty rows otherwise.

Now, one has simply to reduce the pivot rows of M0_echelon, the rows in sub-matrices A′ and B′

after decomposition, by each other: this can be achieved using the Trsm algorithm of the original
Faugère-Lachartre to compute A′−1 ×B′. The reconstruction of the �nal reduced row echelon form is
the same as in the original algorithm.

Figure 2.3.1 shows the di�erent steps of this new method.

Figure 2.3.1: Sketch of the new ordering of operations of Faugère-Lachartre

2.3.1.6 Experimental results

We show, in a nutshell, results of the e�ciency of this method compared to the original Faugère-
Lachartre algorithm; we measure the running time (in seconds) and the memory consumption (the
Resident Set Size) in Megabytes. We compute an echelon form of the matrices issued from Katsura
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13 and Minrank minors 996. The experiments were carried out on an Intel(R) Xeon(R) X5677 CPU
@ 3.47GHz, 12MB of L3 cache and 144GB of RAM.

Table 2.3: New vs old method - row echelon form running time - Katsura 13

Matrix New method (second) Standard

Faugère-

Lachartre

(seconds)

Memory

usage new

method (MB)

mem usage

standard

Faugère-

Lachartre

(MB)

mat1 0.02 0.04 3.76 7.10

mat2 0.16 0.39 14.89 42.52

mat3 0.94 2.13 57.24 173.00

mat4 3.54 7.70 154.80 454.90

mat5 8.41 17.13 291.70 743.90

mat6 12.65 31.56 362.90 1132

mat7 11.67 34.59 441.60 1334

mat8 7.20 34.96 469.80 1384

mat9 3.15 33.66 476.80 1365

mat10 1.74 33.62 477.60 1352

mat11 1.45 38.01 478.60 1351

Table 2.4: New vs old method - row echelon form running time - Minrank minors 996

Matrix New method (second) Standard

Faugère-

Lachartre

(seconds)

Memory

usage new

method (MB)

mem usage

standard

Faugère-

Lachartre

(MB)

mat1 6.17 6.2 115.6 116.5
mat2 19.06 22.71 570.3 587.1
mat3 66.69 101 1380 1642
mat4 166.6 280.4 2746 3071
mat5 317.1 570.4 4440 5479
mat6 530.8 1112 6273 7918
mat7 548.1 1464 7812 9758
mat8 295.1 1397 8595 10590

The new method is clearly more e�cient on both the running time and the memory utilization.
Notice that these are full rank matrices (Katsura 13 and Minrank minors 9_9_6). On matrices issued
from F4, this new method does not lead the same e�ciency. We provide more insights about these
results on the chapter [experimental results ??].
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Chapter 3

Implementation, Data Structures and

Performance Considerations

In this chapter we report on the data structures, the di�erent performance enhancements along with
e�ciency comparisons with other implementations of the Faugère-Lachartre algorithm. We show the
various versions we have implemented and the improvements we introduce with each version. In
3.3.1 we discuss LELA's implementation of Faugère-Lachartre and its e�ciency; we also mention
brie�y code optimization techniques in 3.1. In the following sections we discuss the versions of our
implementation and their characteristics: the SparseV ector, the multiline and the block versions.
We then elaborate about the new method consisting in the new ordering of operations for Faugère-
Lachartre in 3.7. Then, the parallel implementation and the scalability di�culties we have faced are
discussed in 3.8. Finally, in section 3.9, we address the memory utilization of our method and compare
it to the original Lachartre's version; we also brie�y discuss the possibility of a distributed version of
the Faugère-Lachartre algorithm in the same section.

3.1 Code Optimization

Software optimization is a well-documented subject. Most of the techniques when applied as they are
lead to performance enhancements, while others need more �ne tuning and pro�ling. An excellent
reference about the subject is: �Optimizing software in C++: An optimization guide for Windows,
Linux and Mac platforms� by Agner Fog [10]. We mention brie�y the optimizations we have used in
our implementation without elaborating in details the theory behind them.

Compiler built-in optimization

Compilers can generate very optimized binary code by default. However, one can specify the level
of optimization needed with speci�c options: for example, automatic loop unrolling, function inlining
etc. In gcc for example (GNU Compiler Collection) using the �O2 or �O3 options can lead to great
performance enhancements without any actual code tuning. Other options are available for more
speci�c optimization.

Loop unrolling

Loop unrolling is a technique that aims to minimize the loop controlling conditions. In a standard for
loop, an end loop test is usually necessary at each iteration, however, on an unrolled loop, these tests
can be reduced subsequently by duplicating the functionality of the loop body. This is also bene�cial
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when accessing contiguous data in an array because the compiler can de�ne ahead the o�sets for
accessing the array. an example of loop unrolling:

1 for ( int i =0; i <100; ++i )
2 handle ( i ) ;

A corresponding unrolled loop can be:

1 for ( int i =0; i <100; i+=4) {
2 handle ( i ) ;
3 handle ( i +1);
4 handle ( i +2);
5 handle ( i +3);
6 }

In the above loop, only 20% of the branching tests are performed, leading to less loop management
overhead. If the operations in the loop body are on contiguous array elements, the compiler can take
advantage of that also and pre-compute the o�sets for faster access. If supported, the compiler can
even execute the statements inside the loop body in parallel if they were independent.

We make heavy use of loop unrolling in our program. We have noticed that the best loop unrolling
degree corresponds to the quantity of data that has a size multiple of a cache line. For example in
our experiments, with arrays of 64 bit elements (8 bytes), and a cache line size of 64 bytes, the best
unrolling results are achieved with an unrolling degree of 16. Pro�ling is clearly needed in order to
identify the most adequate unrolling degree.

Prefetching

Data prefetching makes it possible to bring data from the main memory into the cache before it is
accessed by the program. If the prefetch is done early enough, the data would eventually be available
in the cache before the program can access it. This is aimed to minimize cache misses in cases where
the compiler cannot predict the data to fetch next (case of sparse linear algebra!). The prefetching
instructions are not blocking instructions, which means that the program issues a prefetch instruction
and continues immediately the execution.

On gcc, one can use the built-in function __builtin_prefetch (const void *addr, ...) where addr
is the address of the data to prefetch. On architectures that do not support prefetching, gcc simply
drops the prefetching instructions (but evaluates the passed arguments for side e�ects nonetheless).

We have made usage of prefetch instructions at some point in our program. We could notice a 10%
to 20% performance gain on cases where the access pattern is easy to predict. However, prefetching is
not used in the �nal versions of our code.

Data alignment

On modern architectures, the CPU reads and writes data from/to memory in word size chunks. Data
alignment consists in putting the data at a memory address that is multiple of the word size (e.g. 4
bytes on 32 bit architectures). Aligning data could require adding padding to the end of data structures
and/or using specialized memory allocation constructs when dynamic memory is needed.

Throughout our implementation of Faugère-Lachartre, we have made usage of aligned data when
storing elements back to the matrices. We use basically std :: vectors as our underlying storage type.
Handling aligned dynamic memory allocations with std :: vectors requires the use of custom allocators
which are passed as a template parameter to std :: vector. An allocator manages all the underlying
memory of the std :: vector and disposes of several functions for that. The most important one is
allocate which is responsible of allocating dynamic memory for the std :: vector.

To allocate aligned memory, we use the posix_memealign function from stdlib.h. Our allocate
function is the following:
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1 po in t e r a l l o c a t e ( s ize_type s i z e , const_pointer * hint = 0) {
2 po in t e r p ;
3 posix_memalign ( ( void**)&p , 16 , s i z e * s izeof (T) ) ;
4 return p ;
5 }

Inligning

Inlining is the process of replacing the function call with the body of the called function itself. This is
very practical since it eliminates the time overhead of the function call/return instructions, and also
improves space usage: code is packed together in the instruction cache. On small functions (i.e. with
few lines of code), inlining can be very bene�cial, however, it can also introduce some overhead if the
functions are big. Once again, pro�ling is a must to identify if inlinng would bene�t the performance
of some code or not.

The inline keyword can be used to hint to the compiler that the following function in the code
should be inlined; however, this is only a hint, the compiler may decide otherwise and not inline the
function. On gcc, one can also specify in the code that a function must be inlined using the attribute
�always_inline�:

in l ine void f oo ( const char ) __attribute__ ( ( a lways_in l ine ) ) ;

The attribute �noinline� can also be used to make sure the function will not be inlined if the
optimization �ags are set (−O2 for example).

Cache optimization

The cache is a small intermediary memory between the CPU and the main memory; it is usually
shared by several cores. There exist several levels of the cache, generally L1 to L3, the most used
data resides in the most inner level: L1 is faster than L2 and L2 is faster than L3. Latency times to
access the main memory can be hundreds of times slower than cache latency. Between the cache levels
themselves, for example L1 and L2, the latency can vary by a factor of 10 or more.

For this reason, making good use of the cache is paramount to achieve e�ciency. The block version
of Faugère-Lachartre 1.4 was mainly designed to take advantage of caching.

A very detailed study on the cache and cpu-cache access optimization from a programming point
of view can be found in [11].

3.1.1 Sparse Vector AXPY and In Place Computations

On sparse Linear Algebra problems, the matrices and vectors are saved in di�erent formats that take
the minimum amount of memory while still o�er e�ciency. We will show the bene�t of using a dense
temporary array to present sparse vectors. We have been using this technique all along the algorithms
we have encountered so far.

Sparse-Sparse vector reduction: axpy

Consider the two sparse vectors x and y. We would like to perform an axpy operations on both,
in other words compute y ← a × x + y for some scalar a. The following struct represents a sparse
vector which is composed of an array of positions and another array of the values corresponding to the
elements of the vector.

1 typedef s t r c u t sparse_vector {
2 std : : vector<int> po s i t i o n s ;
3 std : : vector<int> va lues ;
4 } sparse_vector ;
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The pseudo-code of the axpy function over two sparse vectors is shown in the following code. It is
inspired directly from LELA's BLAS1 :: axpy() function.

1 void axpy_sparse_sparse ( int a , sparse_vector x , sparse_vector y ) {
2 s t r c u t sparse_vector tmp ;
3 int i =0, j =0;
4 long int c ;
5
6 for ( i =0, j =0; i<x . p o s i t i o n s . s i z e ( ) ; ++i ) {
7 while ( j<y . p o s i t i o n s . s i z e ( ) && y . p o s i t i o n s [ j ] < x . p o s i t i o n s [ j ] ) {
8 tmp . p o s i t i o n s . push_back (y . p o s i t i o n s [ j ] ) ;
9 tmp . va lue s . push_back (y . va lue s [ j ] ) ;
10 ++j ;
11 }
12
13 i f ( j < y . p o s i t i o n s . s i z e ( ) && x . p o s i t i o n s [ i ] == y . p o s i t i o n s [ j ] ) {
14 c = a * x . va lue s [ i ] + y . va lue s [ j ] ;
15 ++j ;
16 }
17 else

18 c = a * x . va lue s [ i ] ;
19
20 i f ( c != 0) {
21 tmp . p o s i t i o n s . push_back (x . p o s i t i o n s [ i ] ) ;
22 tmp . va lue s . push_back ( c % RING_MODULUS) ;
23 }
24 }
25 while ( j < y . p o s i t i o n s . s i z e ( ) ) {
26 tmp . p o s i t i o n s . push_back (y . p o s i t i o n s [ j ] ) ;
27 tmp . va lue s . push_back (y . va lue s [ j ] ) ;
28 ++j ;
29 }
30
31 copy_tmp_to_sparse_vector (tmp , y ) ;
32 }

Notice how much overhead is entailed by the above axpy function, indeed, before any addition/-
multiplication a test is made to check what index the elements are originated from. This is clearly
impractical knowing that the most used function in the structured Gaussian elimination and the
Faugère-Lachartre algorithm is the axpy function.

We show now how this axpy operation is done if the y vector is represented as a dense temporary
array in the following code:

1 void axpy_sparse_dense_temp ( int a , s t r c u t sparse_vector x , int y [ ] ) {
2 for ( i =0, j =0; i<x . p o s i t i o n s . s i z e ( ) ; ++i ) {
3 y [ x . p o s i t i o n s [ i ] ] += ( ( long int ) a * x . va lue s [ i ] ) % RING_MODULUS;
4 }
5 }

The complexity of the above code is exactly of the size of the non-zero elements in the vector x.
This method is of great use in the case of the structured Gaussian elimination and the Trsm, Axpy and
Echelonize parts of the Faugère-Lachartre algorithm. Indeed, in those methods, a vector is reduced
by all other pivots before it, which means that if we represent this vector as a dense array and used
the function axpy_sparse_dense_temp, the number of arithmetic operations is exactly the number
of non-zero elements of these pivots. Had the axpy_sparse_sparse function been used, most of the
time would be spent on branching tests rather than actual computations. This method increases the
performance of the code by hundreds of times.
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One can also use a big data type for the temporary dense array in order to accumulate operations
and avoid the modulo reductions after each addition. For example, over sparse vectors of elements
represented with 16 bits, and accumulator of size 64 bits can be used to accumulate over 231 additions
before any need to apply the modulo reduction. This allows a gain that can reach 50% in performance,
refer to section 3.4.2 for detailed results.

3.2 Generalities about the implementation

3.2.1 Main structure of the program

During the implementation of the di�erent versions of the Faugère-Lachartre algorithm, a pattern
has emerged about the architecture and organization of the components of our C++ code. These
components are:

� The indexer: this is the class responsible for the analysis, splicing (decomposition) and recon-
struction of the �nal matrix. The indexer is adapted according to the di�erent data structures
used in the di�erent versions we have developed. There is also an analogous �parallel indexer�
which have some parallel traits in the splicing/reconstruction steps.

� Matrix-ops (matrix operations): this class is responsible for everything from vector level op-
erations (axpy, head, normalize etc.) to matrix level operations: Trsm, Axpy, echlonize etc.
Decomposing this class further was very helpful in obtaining good modularity for the whole code
in the case of block data structures; we have 3 levels for matrix-ops:

� Level1-ops: low level vector and memory operations like copy_vector_to_dense_array,
head, normalize etc.

� Level2-ops: vector-level and block-level operations: axpysparse, axpyhybrid, Axpyblock,
Trsmblock etc.

� Level3-ops: matrix level operations: Axpy, Trsm, Echlonize (Gauss).

� Matrix-utils: this class has di�erent utilities used throughout the code like reading/writing
matrices from/to disc; equality comparison between matrices of di�erent data structures; con-
version of matrices to other representations: from sparse rows representation to a multiline or
block representation and vice versa; dumping an image representation of the matrix etc.

� Main program: implements the actual Faugère-Lachartre algorithm using the di�erent methods
of the aforementioned components.

3.2.2 Notes on the Validation of Results

Due to the number of steps of the Faugère-Lachartre algorithm and the multiple versions/data struc-
tures we have implemented, it was paramount to validate each step of the algorithm separately on the
go. Furthermore, some computation errors might not appear unless relatively large matrices are used,
which makes it di�cult to rely on small dummy data. To this end we have used a progressive method
by which we validate results as we use di�erent data structures and progress in the algorithm steps;
the main indicators of correctness used are the following:

� The rank: the rank of the matrix obtained is a strong indicator about whether the outcome is
correct or not. For F5 matrices, the rank is equal to the row size; and for F4, matrices might
undergo a rank loss. We compare the rank from our program with other implementations (e.g.
the original implementation of Sylvain Lachartre). However, the rank does not guarantee that
the result is correct.
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� The shape of the resulting matrix: we usually dump the matrix as an image �le (c.f. 3.2.3)
and visualize it compared to the image �le of a matrix issues from a reliable implementation,
this is very helpful since it allows spotting the errors quickly.

� Rref : the ultimate indicator is computing the reduced row echelon form of our matrices and
then comparing them with the rref of the corresponding matrices issued from a reliable imple-
mentation. Indeed, each matrix has a unique echelon form, hence, if this test fails, then it is
guaranteed that the matrices are no equivalent.

Obviously, several steps in this process are critical. For example, the equal operation between two
matrices must be very reliable or the overall validation could fail. We use LELA's BLAS3 :: equal as
much as possible when we can convert our matrices to LELA's native types (SparseMatrix); these
methods are considered reliable enough. For the Rref validation step, we have developed the structured
Gauss method which we validated against LELA's naïve Gaussian elimination.

While developing a version i, the outcome of each step is validated against that of the corresponding
step in version i− 1. For example, the matrices issued from the analyze step of the block version are
validated against the matrices issued from the analyze step of the normal row version. Only after we
make sure that this analyze step is reliable enough, we advance to developing the following steps. Our
very �rst version was validated against LELA's implementation [REF]. Using the most recent stable
version is useful since it is usually the most e�cient too; this means we can validate larger matrices in
less time as we progress.

3.2.3 Visualization of the Structure of Matrices

As we have mentioned in the validation step, visualizing the structure of the matrices is very helpful
to spot computation errors. To this end, we have developed small routines to represent our matrices
as image �les that can be visualized with di�erent imaging tools. We use the pbm (Portable BitMap)
format which is a simple black and white image format. In this format, an image can be considered
as a matrix n×m of bits where 0s represent a black pixel and 1s a white pixel. The header contains
information about the �le type, the size of each row, and the number of rows in the bitmap.

Example:

P1 #magic header , comment a f t e r # i s ignored
5 3 #the s i z e o f each row fo l l owed by the number o f rows
0 1 0 1 1
1 1 0 0 1
1 1 0 0 0

This is perfectly adapted to the nature of our matrices: they are distinctively sparse, and usually
when there are computation errors, some elements would zero out and become clearly visible on a pbm
format. Following is an example of katsura12/matrix1 :

However, the pbm format is not suitable for big matrices; indeed, for a matrix of size n×m, the size
of the pbm �le is (n×m)/8 bytes. Using other image formats that support compression is necessary.
For instance, LELA supports reading/writing binary matrices from/to png �les. Unfortunately there
is no current support for matrices over small size �elds yet.

3.2.4 Format of the matrices on disc

When reading and saving matrices over F65521 we use the following format to store the matrices on
disc, all the bytes are written contiguously without any separators:

Header :

number o f rows | number o f columns | F i e ld c h a r a c t e r i s t i c | number o f non−zero e lements
4 bytes ( uint32_t ) | 4 bytes | 4 bytes | 8 bytes ( uint64_t )
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Figure 3.2.1: katsura12/matrix1 represented as a pbm image �le

Data : If the number of non-zero elements in the matrix is Nz, then the data is saved as following:

Nz non−zero va lues | Nz po s i t i o n s o f non−zero va lues | number o f non−zero e lements in each row
2 bytes each element | 4 bytes per element ( uint32_t ) | 4 bytes

3.3 LELA Library

Library for Exact Linear Algebra (LELA) is a C++ template library for computations in exact Linear
Algebra. We have used LELA's data types all over the development process (in representing �elds
with its built in Modular class for example). LELA o�ers a great uni�ed interface and �exibility when
dealing with di�erent types of matrices and vectors: dense, sparse, hybrid etc. Furthermore, LELA
takes advantage of highly tuned specialized libraries when detected on the target systems. These
libraries are:

� BLAS (Basic Linear Algebra Subprograms): can improve greatly the computations over dense
matrices on Z/nZ, several options are avaiable: goto blas, ATLAS etc.

� M4RI [7]: for high performance calculations with dense matrices over GF (2)

� Libpng : for reading writing matrices over GF (2) in png format.

The basic types of LELA are: Ring and Ring-elements for ring arithmetic; and vectors along with
matrices over a Ring. The BLAS interface is a very intuitive and a uni�ed way to perform di�erent
operations over matrices and vectors. The BLAS1 namespace contains various functions handling
vector operations, the vectors can be of any types: sparse, dense, hybrid, hybrid over FG(2) etc.; by
use of C++ templates, LELA assures the most suitable method is used for any of the above types,
this can be de�ned at compile time. BLAS2 contains matrix-vector routines while BLAS3 handles
matrix-matrix operations.

3.3.1 LELA's Faugère-Lachartre implementation

LELA has a basic implementation of the Faugère-Lachartre algorithm. The analyze, decomposition
and reconstruction steps are performed using a class called Splicer. LELA's implementation has a
large memory footprint: indeed, the sub-matrix A is a sparse matrix, whereas B, C and D are dense
matrices. This is indeed very limiting in the case of very large matrices, a lot of memory can be wasted
presenting 0s and a lot of overhead could be introduced with useless computations.

The Trsm step (c.f. 1.3.1.3) can be performed using only one function call in LELA:
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BLAS3 : : trsm ( ctx , ctx .F . one ( ) , A, B, UpperTriangular , f a l s e ) ;

Likewise, the Axpy step is equivalent to the gemm routine in BLAS, using LELA's BLAS3 the
Axpy step is performed by a call to:

BLAS3 : : gemm ( ctx , ctx .F . minusOne ( ) , C, B, ctx .F . one ( ) , D) ;

The ctx parameter is a Context object which holds several information about the ring over which
the computations are performed. ctx.F is the actual ring, and the ctx.F.one() and ctx.F.minusOne()
are elements in the ring ctx.F .

Experimental results

We have performed running time experiments of LELA's Faugère-Lachartre implementation on sparse
matrices over the �eld F65521. We use 4 con�gurations: with CBLAS enabled or disabled, and over
matrices' elements represented over 16 bit with the uint16_t types, or over 64 bits with the double
type. One advantage of using the double data type is that the CBLAS routines can achieve better
performance over these elements. One downfall is that the memory required is now 4 times larger
compared to when using 16 bit elements.

We compare all these with our implementation that we will present in 3.6. The experiments were
performed on an Intel(R) Core(TM) i7 CPU @ 2.93GHz, 8MB of L3 cache and 8GB of RAM. All the
timings are in seconds. When no timing is given (marked with a �-�) it means that the program takes
abnormally long time that the experiment was aborted. Notice that we compute just a row echelon
form and not a reduced row echelon form.

Table 3.1: LELA's Faugère-Lachartre implementation timings

matrix size
LELA with uint16_t LELA with double new

implementaionno BLAS with BLAS no BLAS With BLAS

kat13/mat1 1042 x 2135 2.38 2.3 0.79 0.39 0.04

kat13/mat2 3827 x 6207 52.22 53.39 13.69 6.50 0.42

kat13/mat3 10014 x 14110 2478 2463.8 422.16 41.45 2.42

kat13/mat4 19331 x 25143 - - 5574.56 183.74 8.98

kat13/mat5 28447 x 35546 - - - 435.56 20.06

Minrank

minors 9 9

6/mat2

5380 x 22400 - - - 307.66 27.34

We can already notice that using the LELA Faugère-Lachartre implementation with matrices'
elements represented with 16 bits is not e�cient whether high tuned BLAS routines are used or not,
both experiments take almost the same time. However, using elements represented with the double
type we can see a clear performance bene�t compared to the 16 bits version. Indeed, without BLAS
enabled the double version is almost 6 times faster than the one with 16 bits. On the other hand,
using BLAS, we can notice another performance shift for the double version which is about 10 times
faster than the corresponding non BLAS version. Although the double version is faster, it requires 4
times the memory of the 16 bits version as we have already mentioned.

Despite all the bene�t provided by BLAS and the use of the double data type, LELA's Faugère-
Lachartre is not as e�cient as our implementaion which can be almost 20 times faster.

LELA's Faugère-Lachartre implementation is, however, very e�cient on matrix over GF (2). In-
deed, Martin Albrecht have performed a comparison of the e�cacity of LELA's Faugère-Lachartre
implementation with several other libraries including M4RI. It was shown 1 that LELA's implemen-
tation over GF (2) outperforms indeed the other libraries, especially when the matrices get bigger.

1http://martinralbrecht.wordpress.com/2012/06/22/linear-algebra-for-grobner-bases-over-gf2-lela/
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3.4 First version using the SparseMatrix type

As in the Structured Gaussian Elimination 1.2, we have used LELA's SparseMatrix type to represent
our matrices. The rows are represented with the type SparseV ector which is composed internally
of two vectors: one for the values and the other for the positions of the elements. Both types are
parameterized with the use of to C++ templates. Over all our implementation we will consider
speci�cally matrices over F65521: the elements of these matrix can be represented with 16 bits data
types.

The Trsm algorithm from 1.6 can be translated using LELA's data structures like following:

1 void Trsm( const SparseMatrix<uint16_t> A, SparseMatrix<uint16_t> B)
2 uint64_t temp [B. coldim ( ) ] ;
3 for ( int i = A. rowdim ()−1; i >=0; −− i ){
4 copy_sparse_row_to_dense_array (B[ i ] , temp ) ;
5 for ( j =1; j<A[ i ] . s i z e ( ) ; ++j ){
6 register uint16_t Av = A[ i ] [ j ] ;
7 register uint32_t Ap = j ;
8 /* axpy : temp = temp − A[ i ] [ j ] * B[ j ] */
9 for ( int k=0; k<B. coldim ( ) ; ++k){
10 temp [B[Ap ] [ k ] . f i r s t ] += ( uin32_t )Av * B[Ap ] [ k ] . second ;
11 }
12 }
13 copy_dense_array_to_sparse_row ( temp , B[ i ] ) ;
14 }

temp is an array of size equal to the column size of the matrix B; its elements are of size 64 bits.
We use temp as an accumulator in the axpy operations to avoid modulo reductions each time; we
can perform up to 231 additions in this accumulator without over�ow. The axpy operation in the
above code corresponds to the very inner loop over k; clearly the number of multiplications/additions
corresponds exactly to the number of non-zero elements of the rows.

The value A[i][j] by which we reduce is constant throughout the axpy operation, we can hence hint
to the compiler to keep it in a register for fast access, the same is true for the position of the row,
Ap, by which we reduce. LELA's SparseV ector abstractly exposes elements from the two underlying
vectors (values and positions) as a tuple: the tuple's member first is used for the position and second
for the value.

3.4.1 Case of generic matrices

In case of generic �elds, we can directly use LELA's built-in operations in the Ring moduleModular <
Ring_Element >. For example, doing a multiplication-reduction operations can be performed with
Modular < Element > .axpyin() method. While this ensures that the program functions over any
�eld, it can undergo severe performance degradation due to the modular reductions performed on each
element during the axpy step.

3.4.2 Experimental results

We have implemented both methods (using an accumulator and using in-place computations) of the
�rst implementation of Faugère-Lachartre with LELA's SparseMatrix with rows represented with
LELA's SparseV ector. When the accumulator is used, it is used throughout all the steps of the
algorithm: Trsm, Axpy and Gauss (or Echelonize). We compute the reduced row echelon form in
each experiment.

The experiment was performed on an Intel(R) Core(TM) i7 CPU with a clock speed of 2.93GHz,
8MB of L3 cache and 8GB of RAM. All the timings are in seconds.
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Table 3.2: Running time of the �rst implementation of Faugère-Lachartre

matrix size density with
accumulator

without
accumulator

Kat13/mat1 1042 x 2135 5.02% 0.076 0.122
Kat13/mat2 3827 x 6207 3.69% 0.915 1.658
Kat13/mat3 10014 x 14110 2,97% 6.819 13.26
Kat13/mat4 19331 x 25143 2,69% 28.77 58.21

Minrank 996/mat1 1296 x 11440 99.99% 31.14 67.99
Minrank 996/mat2 5380 x 22400 45.29% 110.9 235.3

The above table shows that using an accumulator is very advantageous; the running time of the
version with an accumulator is generally two times faster than the version without an accumulator.
Although the non-accumulator version is generic and can work over any generic �eld, we will focus in
the following versions only on matrices over a �eld with a characteristic that can be represented over
16 bits (a prime less than 216).

3.5 Second version: using the �multiline� data structure

The matrices issued from Gröbner basis computations have some very special properties as we have
discussed in 1.3. Other than these properties, we can notice two patterns of the elements in the
matrices: horizontal and vertical. In the vertical pattern, when rowi[j] 6= 0, rowi+1[j] tends to be
di�erent from 0 too; On the other hand, a horizontal pattern can be spotted also: when rowi[j] 6= 0
then rowi[j + 1] tends to be di�erent from 0.

Such grouping patterns can be easily spotted in the �gure 3.5.1 of the matrix kat12/mat2 for
example:

Figure 3.5.1: Patterns of elements' grouping in the matrix kat12/mat2

We can exploit this based on the �ow of operations in the Trsm and Axpy steps. Consider, for
example, the row i and the column j; in the Trsm step we reduce the row B[i] by the row B[j] using
the scalar A[i][j] (c.f. 3.4). Based on the previous patterns, the element at column j + 1 tends to be
non-zero and hence, the row B[i] is likely to be reduced by the row B[j + 1] too.

Now considering the elements themselves inside the row B[i]; we can notice that when the element
at column t in B[i] is reduced by the element B[j][t], it is likely to be reduced by B[j + 1][t]. This is
due to the horizontal pattern in the matrix A which is projected as vertical pattern in B. We shall
mention that B is generally relatively dense, and hence the elements B[i][t] and B[i + 1][t] are likely
to be non-zeros.

The schema in �gure 3.5.2 shows the relation of these patterns in the Trsm operation:
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Figure 3.5.2: Flow of operations exploiting grouping pattern in the Trsm step

In the �gure 3.5.2, on line i, if the elements at columns j and j + 1 in A are not 0 (horizontal
contiguous pattern), the element B[i][t] will be reduced by the both B[j][t] and B[j + t][t] (vertical
contiguous pattern).

De�nition:

We call a multiline vector the data structure in which we present the elements of several sparse vectors
with a unique positions' vector and a unique values vector adding zeros when necessary. The elements
are stored contiguously following a column order: the elements of all the rows at column i are stored
contiguously in memory before those of the column i+ 1.The following class, represents the multiline
data structure:

1 template <typename Element , typename Index>
2 class mu l t i l i n e {
3 int NB_ROWS; /* the number o f the v e c t o r s r epre sen t ed in t h i s mu l t i l i n e */
4 std : : vector<Index> pos ; /* the column index o f the e lements */
5 std : : vector<Element> va lues ; /* the va lues , t h i s v e c t o r has always a s i z e

NB_ROWS * pos . s i z e ( ) */
6 }

Internally, the multiline is stored as two di�erent std :: vectors. The �rst, called pos, holds the
positions, and the second, called values, holds the values of the elements stored by column major
order. An element from row x at position i in the multiline has a column index pos[i] and a value
values[i×NB_ROWS + x] where NB_ROWS is the number of rows packed in a single multiline.

Example : Consider the two rows:

row1 =
[
1 0 0 2 5 3 0 1 3

]
row2 =

[
0 0 1 1 0 3 0 2 0

]
A sparse representation of each row separated would be equivalent to (�rst column is at index 1):

row1 =
[
(1, 1) (2, 4) (5, 5) (3, 6) (1, 8) (3, 9)

]
row2 =

[
(1, 3) (1, 4) (3, 6) (2, 8)

]
Where the notation (x, y) means the element of value x is at column index y.

Representing this with a multiline data structure (of 2 rows) would be equivalent to merging the
indexes of the two rows, and interleaving the values according to their original positions:

multiline(row1,row2) =
[
({1, 0}, 1) ({0, 1}, 3) ({2, 1}, 4) ({5, 0}, 5) ({3, 3}, 6) ({1, 2}, 8) ({3, 0}, 9)

]
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The notation ({xi, xj}, y) means that the two elements xi and xj are at index y. Notice
that xi and xj are from two successive rows. This multiline in represented in �gure WWW.

Figure 3.5.3: the multiline data structure

3.5.1 Multiline row reduction

We now focus on the row reduction using this new data structure. For the sake of simpli�cation we will
only consider multiline rows that represent two sparse vectors. There are 2 cases for rows reduction
now: when there are two successive (column-wise) non-zero horizontal elements in A and when there
are not (e.g. α, β are successive column-wise in the �gure 3.5.2). Notice that the vertical elements in
a multiline are always successive.

3.5.1.1 Case of non-successive elements

In this case, the reduction is made only over the elements originated from one vector in the multiline.
This may cause a lot of jumps and the fetching of unused data into the cache (since the elements from
the 2 original vectors are now interleaved). What is important is that we reduce two rows at the same
time. The following function performs the axpy operation between a multiline row represented by 2
dense arrays temp1 and temp2 on one hand, and another multiline vector on the other hand. Using
the two scalars a1 and a2.

1 void axpy ( uint16_t a1 , uint16_t a2 , mu l t i l i n e <uin16_t> v , uint64_t temp1 [ ] ,
uint64_t temp2 [ ] , int l i n e ) {

2 register uint32_t idx , va l ;
3 for ( int i =0; i<v . s i z e ( ) ; ++i ) {
4 idx = v . pos [ i ] ;
5 va l = v . va lue s [ l i n e + i * 2 ] ;
6 temp1 [ idx ] += ( uint32_t ) a1 * va l ;
7 temp2 [ idx ] += ( uint32_t ) a1 * va l ;
8 }
9 }

idx represents the column index of the element at position i in the multiline, and val holds the
corresponding value of that element. The line variable indicates which vectors we are reducing by
among those in the multiline. Again, we hint to the compiler that these variables should be used as
registers for fast access. Notice that while we access contiguously the positions vector, we skip every
other element in the values vector. This causes more cache misses and more overhead while the data
is transferred from main memory to the cache.

The main bene�t of this data structure is now visible: we are reducing 2 rows at the same time,
notice how the variables val and idx are fetched only once from memory but are used twice.

3.5.1.2 Case of successive elements

It gets more interesting when the horizontal pattern is observed on the rows of A: the case column-wise
of successive elements. Indeed, in this case, we can perform 4 rows reductions at once as shown in the
following code:
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1 void axpy2 ( uint16_t a1_1 , uint16_t a1_2 , uint16_t a1_1 , uint16_t a1_2 , mu l t i l i n e <
uin16_t> v , uint64_t temp1 [ ] , uint64_t temp2 [ ] ) {

2 register uint32_t idx ;
3 register uint16 val1 , va l2 ;
4 for ( int i = 0 ; i < v . s i z e ( ) ; ++i ) {
5 idx = v . IndexData [ i ] ;
6 val1 = v . va lue s [ i * 2 ] ;
7 val2 = v . va lue s [ i *2+1] ;
8 arr1 [ idx ] += ( uint64_t ) ( ( ( uint32_t ) a1_1 * va l1 ) + ( uint64_t ) ( ( uint32_t ) a1_2

* val2 ) ) ;
9 arr2 [ idx ] += ( uint64_t ) ( ( ( uint32_t ) a2_1 * va l1 ) + ( uint64_t ) ( ( uint32_t ) a2_2

* val2 ) ) ;
10 }
11 }

As in the previous case, idx represents the column index of the element in position i; val1 represents
the value at position i of the �rst vector and val2 the value of the second vector at the positions i.
a1_1 and a1_2 are the scalars from a given column j (j is the variable in the loop of the Trsm
algorithm), whereas a2_1 and a2_2 are the scalars from the column j + 1.

Notice how we perform 4 reductions at one pass (each dense array is reduced by two rows).

3.5.1.3 Introduction of useless operations with the multiline data structure

When using a multiline of size 2, we can make sure no operations are performed on null elements. For
example, in the axpy and axpy2 functions above, we can perform tests before the actual loop to make
sure to include in the actual computations only the non-zero scalars (a1, a2 for axpy and a1_1, a1_2,
a2_1, a2_2 for axpy2). This becomes very complicated when we deal with multilines of variable size:
we cannot predict every possible con�guration and eliminate useless multiplications by 0. Indeed, for
a multiline of size n, there are n2 scalars to reduce by at each step (e.g. for size 2, we have used 22

scalars in the axpy2 algorithm).

Furthermore, on variable size multiline rows, the memory overhead is very important too. Indeed,
for a multiline of size 2, on a given column index, we can lose at worst 4 bytes in case one element is
null and the other is not. On a multiline of size n, we can waste n − 1 × 4 bytes of memory in case
only one element is not zero in the corresponding column at the n successive rows. This entails a great
overhead of useless computations as we have mentioned previously.

3.5.2 Experimental results

We have implemented a version of Faugère-Lachartre using the multiline data structure with values
represented over 16 bits and positions over 32 bits. We use 64 bit dense array accumulators throughout
the Trsm, Axpy and Echelonize to eliminate modulo reductions overhead. A comparison between
the new version using the multiline data structure with the last version which uses the SparseV ector
to represent the rows of the matrix (c.f. 3.4) is shown below. We compute the reduced row echelon

form in each experiment.

The experiment was performed on an Intel(R) Core(TM) i7 CPU @ 2.93GHz, 8MB of L3 cache
and 8GB of RAM. All the timings are in seconds.
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Table 3.3: Running time of the multiline implementation of Faugère-Lachartre

matrix size density using LELA
SparseV ector

using
multiline

Kat13/mat1 1042 x 2135 5.02% 0.076 0.078
Kat13/mat2 3827 x 6207 3.69% 0.915 0.78
Kat13/mat3 10014 x 14110 2,97% 6.819 4.92
Kat13/mat4 19331 x 25143 2,69% 28.77 19.29

Minrank 996/mat1 1296 x 11440 99.99% 31.14 16.94
Minrank 996/mat2 5380 x 22400 45.29% 110.9 64.14

We can notice a clear shift in performance when the multiline data structure is used. On slightly
dense matrices (the case of the last two ones in the table 3.3) there is a very great e�ciency shift from
30% to 60%: this is mainly because the elements are usually contiguous inside the multiline and most
of the reductions are axpy2 reductions which reduce 4 rows at a time.

3.5.2.1 Disadvantages of the multiline data structure

As mentioned in 3.5.1.3, the multiline data structure can introduce some loss in memory and e�ciency
in case of general multiline sizes. However, this can be minimized with multilines of size 2.

The main disadvantage of using this data structure is the complexity of the code introduced, for
instance, when reducing two multilines by each other in the Gauss step, the coe�cients a1_1, and
a1_2 are used directly, but not the coe�cients a2_1, a2_2. Indeed a2_1 and a2_2 are to the left of
a1_1 and a1_2, to this end, their image is computed as if we were only reducing by a1_1 and a1_2
before calling the actual axpy2 step.

This data structure is ine�cient with algorithms that require sorting also. It can be easily seen
that sorting individual rows would entails a complete rewrite of whole multiline rows. For example,
exchanging the data of the �rst vector in a multiline with another vector in another multiline would
entail the whole two multilines to be rewritten: all the data of all the vectors in both multilines. Notice
that in case of simple vectors like C++ STL std::vectors or LELA's SparseV ector, this operation is an
O(1) operation. This is the main reason why we have chosen to use the standard structured Gaussian
elimination in the Gauss step of the FGL algorithm, rather than the method described in 1.3.1.5.
Refer to 2.1.1 for more details about this step.

3.6 Block Representation

A block representation of the matrices as described in 1.4 o�ers the Faugère-Lachartre algorithms
a twofold e�ciency gain: �rst, it allows more data to be packed in small blocks that can �t into
the cache, thus, taking advantage of spatial and temporal locality. Second, separating data in block
columns introduces the possibility to perform parallel processing over the columns of the matrices B
and D since there is no depend between these columns.

We have seen in the previous sections that changing the data structure play an important role in
achieving good performance. To this end, we have implemented several data structures to represent the
blocks and compared the di�erent running times in order to identify the most suitable data structure.
We introduced a new type to represent block matrices: SparseBlockMatrix which is a template class
parameterized by the block type. This class is a list of rows of blocks where each row is a list of blocks.
The di�erent block representations are:

Blocks of SparseVectors

In this data structure, a block is simply a list of LELA's SparseV ector. This block doesn't support
hybrid rows.
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Contiguous Sparse Blocks

A contiguous sparse block is a block where all the elements of the block are stored in the same array
val; all the corresponding positions are also stored contiguously in another array pos.A third list, sz,
is used to hold the size of each vector in the original block. This is mainly the same block structure
explained in [2], very similar to the CSR format 2.

The arrangement of the elements themselves in pos and val is di�erent following the matrix the
block is originated from. For instance, for the matrices A and C, the elements are listed contiguously
from right to left and then from down to top; whereas for the blocks of the matrices B and D, the
elements are listed from left to right then from down to top inside each block. Notice that the indexes
of the elements change following the directions they are listed from: on A and C, the index 1 is the
right most column and on B and D, the left most element is at index 1.

There is no support for hybrid rows in this data structure: all the rows are in a sparse format
which means, every element in the val array has a corresponding element in the pos array implying
that both the arrays have the same size all the time.

Example : consider the following bloc: 1 2 0 7
0 3 9 0
0 1 4 0


If it was originated from A or C the corresponding lists are:
val =

[
4 1 9 3 7 2 1

]
pos =

[
2 3 2 3 1 3 4

]
sz =

[
2 2 3

]
Now the same block considered in B or D:
val =

[
1 4 3 9 1 2 7

]
pos =

[
2 3 2 3 1 2 4

]
sz =

[
2 2 3

]
Hybrid Contiguous Blocks

A contiguous hybrid block di�ers from the sparse block only by the fact that it takes into account
hybrid rows. If a row has more elements than a given threshold , then it is represented as a dense
array introducing zeros when needed; we keep no elements in the pos array in this case. This is very
practical because it ensures the memory used is always optimal: indeed, if the threshold is 50%, a
sparse vector can at worst have half the elements represented as value-position pairs, which does not
exceed the size of a dense array. If the number of the elements exceeds the threshold, then a dense
representation would allow actually more memory savings compared to if only a sparse representation
was used.

Example : on the following block, with a 60% threshold 1 2 0 7
0 3 9 0
0 1 4 0


If it was originated from A or C the corresponding lists are:
val =

[
4 1 9 3 7 0 2 1

]
pos =

[
2 3 2 3

]
sz =

[
2 2 4

]
2CSR: Compressed Sparse Row
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Sparse MultiLine Blocks

Like a sparse block, a sparse mutliline block is a list of sparsemultilines rather than LELA's SparseV ectors.

Hybrid MultiLine Blocks

A hybrid multiline, analogous to a hybrid vector, is a mutliline where the elements are stored in a dense
array in the case the number of the elements inside the multiline exceeds some threshold, introducing
zeros when needed. If the number of elements in the multiline exceeds a given threshold then the
multiline becomes simply a pack of NB_ROWS contiguous arrays, no positions' data is stored in the
pos vector. A hybrid multiline block is then simply a list of hybrid multilines.

3.6.1 Experimental results

We have performed timing experiments over the 5 block data structures taking into account the Trsm
and Axpy operations. The change of block type requires a complete rewrite of the underlying code of
the actual Axpy and Trsm. The blocks are of size 256x256 and each multiline is holding 2 vectors at
once.

The experiments were performed on an Intel(R) Core(TM) i7 CPU @ 2.93GHz, 8MB of L3 cache
and 8GB of RAM. The timings of the Trsm step using di�erent data structures are shown; all the
timings are in seconds shown in �gure 3.6.1.

Figure 3.6.1: Running time of Trsm with di�erent block data types

Clearly both the sparse and hybrid multiline blocks outperform the other types. We notice however
that the sparse contiguous is the most ine�cient. The hybrid contiguous block has a running time
almost equivalent to the sparse block. The sparse multiline block version outperforms the non-multiline
ones, which is predictable given the performance of the multiline data structure shown in 3.3.

The hybrid multiline version is the most e�cient being 3 to 4 times faster compared to the other
data structures. This can be explained, in addition to the performance of the sparse multiline data
structure itself, by the type of axpy operations performed on dense multiline rows. Indeed, one can
take advantage of loop unrolling to a great level when the size of the block is known; also, in the
case of dense multiline, the elements are stored and treated contiguously which allows the compiler to
perform further optimization like prefetching and loop prediction.
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In the case of hybrid multiline blocks, the simple axpy operation we have presented in 3.1.1 is
modi�ed to handle the multilines according to their nature: sparse/dense, block size/relative size,
reduction by one rows/two rows. These functions are:

� SparseScalMulSub__one_row__vect_array

� DenseScalMulSub__one_row__vect_array

� DenseScalMulSub__two_rows__vect_array

� SparseScalMulSub__two_rows__vect_array

� DenseScalMulSub__one_row__vect_array__variable_size

� DenseScalMulSub__two_rows__vect_array__variable_size

In the Trsmblock we also reduce a block by itself, leading to two more axpy operations on dense simple
arrays:

� DenseScalMulSub__one_row__array_array

� DenseScalMulSub__two_rows__array_array

The compiler succeeds in the case of the latter two functions to generate SSE (Streaming SIMD
Extensions) code using mmx registers.

3.6.2 Block version vs multiline version performance

We present in the table 3.4 the comparison between the running time of the block version and the
multiline (matrix of multiline rows) version when computing the reduced row echelon form of several
matrices. The multiline is of size 2 always and the blocks are 256x256. The experiments were performed
on an Intel(R) Xeon(R) X5677 CPU @ 3.47GHz, 12MB of L3 cache and 144GB of RAM.

Table 3.4: Running time of the multiline implementation of Faugère-Lachartre

matrix size density multiline
version

block version

Kat13/mat5 28447 x 35546 2.65% 38.07 27.75
Kat13/mat6 34501 x 42315 2.46% 59.57 41.38
Kat13/mat7 38165 x 46265 2.55% 63 44.73
Kat13/mat8 39590 x 47768 2.65% 58.23 42.13

Minrank 996/mat3 12224 x 36784 32.84% 214.9 131.5
Minrank 996/mat4 21066 x 52502 27.43% 583.6 346.8
Minrank 996/mat5 30519 x 67094 24.07% 1338 760.2
Minrank 996/mat10 46830 x 88400 24.45% 2593 1302
Minrank 996/mat11 46956 x 88535 24.47% 2622 1280

The block version is clearly advantageous compared to a simple multiline version. On dense ma-
trices, the block version can even be more than 50% faster than the simple multiline version.

3.6.3 Notes on the matrix decomposition using blocks

The block decomposing and reconstruction of the matrices become relatively complex and introduced
some overhead. First, the blocks are represented from left to right on C and D and from right to
left to right on A and C, this requires two passes on each row before its elements can be put in their
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�nal positions. Using the multiline data structure entails some overhead when the rows are accessed
individually during the matrix reconstruction also.

Generally the decomposition and reconstruction steps are very negligible compared to the overall
execution time of the algorithm; however, on the last matrices, where only several non-pivot rows are
present, the time in the decomposition and the reconstruction becomes very visible. More optimizations
are possible in our implementation of the Indexer class responsible for the decomposition and the
reconstruction of the matrices.

3.7 Implementation of the new ordering of operations for Faugère-

Lachartre

We now consider the e�ciency of our main contribution which consists in the new ordering of operations
in Faugère-Lachartre presented in 2.3. We have implemented this new method using the multiline data
structure; this allows us to perform the reduction of the rows of C and those of D at the same time
without having to write back to C. Performing these two operations separately does not introduce a
lot of overhead neither: in this case, the coe�cients by which D is to be reduced must be saved to C
and then used to reduce D in a second time. Algorithm 2.3 shows how we can reduce C and D at the
same time; performing separate reduction is simply applying the loop of this algorithm twice, �rst on
the rows of C and saving them back, then on the rows of D.

Up to this point, we have seen that the block version is well fast than the multiline version,
however, in the case of the new method, the multiline version allows us nonetheless to take advantage
of performing one pass over C to reduce D. As explained in 2.3.1.2, when blocks are used to reduce
C in the new method, a block i (starting from the left) is read at least i− 1 times to reduce blocks of
lower index in C. Not only using blocks adds the overhead of writing results back to C, but also the
blocks of C are read multiple times in order to reduce C completely.

We show in the table 3.5 the running time of reduction of C in the two cases: when C is represented
by multiline rows and when it is represented by blocks. The experiment was performed on an Intel(R)
Core(TM) i7 CPU @ 2.93GHz, 8MB of L3 cache and 8GB of RAM. All the timings are in seconds.

Table 3.5: Reduce C, block vs multiline performance

matrix reduce C
multiline

Copy Cmultiline to Cblock reduce C
block

Kat13/mat4 0.71 0.08 0.98
Kat13/mat5 1.82 0.17 2.63
Kat13/mat6 2.61 0.20 4.30
Kat13/mat7 2.55 0.17 4.13

Minrank 996/mat2 0.50 0.05 0.55
Minrank 996/mat3 3.95 0.18 4.09
Minrank 996/mat14 17.25 0.42 17.33

While the multiline is slightly more e�cient than the block version in the case of dense matrices as
in the case of the last matrices in the table, it is mostly 2 times faster on sparser matrices like those of
the Katsura problem. To this end, we chose to use explicitly the multiline version while reducing C,
then writing C back to a block matrix, Cblock, while releasing C's memory on the go, since it is more
e�cient to perform a block reduction of D which is more e�cient than the multiline one. Another
advantage to doing this is that the decomposition time is improved also (c.f. 3.6.3).
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3.7.1 Experimental results

We can see in the results of table 3.6 that the new method does not su�er from the case when the
matrices have only several non-evident pivot rows as in the case of the standard Faugère-Lachartre
algorithm, the time spent on the Trsm step is very penalizing when the reduced row echelon form is
not required.

The table 3.6 shows the running time in seconds of the new method when computing a row echelon
form.

Table 3.6: New method vs old method performance

matrix New FGL method Old FGL method Old/New

Kat13/mat4 3.54 7.697 2.17
Kat13/mat5 8.409 17.13 2.04
Kat13/mat6 12.65 31.56 2.49
Kat13/mat7 11.67 34.59 2.96

Minrank 996/mat2 19.06 22.81 1.20
Minrank 996/mat3 66.69 101.3 1.52
Minrank 996/mat4 166.6 280.9 1.69
Minrank 996/mat12 24.85 1341.77 49.42
Minrank 996/mat13 22.26 1390.76 55.03

Mr10/mat2 104.7 131.9 1.26
Mr10/mat3 318.7 535.9 1.68

On these matrices, the new method is always more e�cient than the old one, we can see a speedup
of 50 times faster on the last matrices, for instance the matrix 12 of Minrank Minors 996 problem.

However, the new method is less e�cient on some occasions on non-full rank matrices as shown in
the table 3.7. The matrices in the table are issued from the F4 algorithm and not full rank.

Table 3.7: New method vs old method performance on F4 matrices

matrix New FGL method Old FGL method Old/New

Kat11/mat5 2.208 2.276 1.03
Kat11/mat6 2.752 3.218 1.17
Kat11/mat7 4.026 3.802 0.94
Kat12/mat4 9.992 8.306 0.83
Kat13/mat5 20.63 18.06 0.88

More testing must be made on non-full rank matrices in order to deduce if the new method is not
e�cient for these cases. The Katsura 11 and 12 problems are relatively small and cannot be considered
as de�nitive benchmarks of the e�cacity of the new method.

We show in the �gure 3.7.1 the speedup that we achieve using the new ordering of operations
compared to our implementation of the standard Faugère-Lachartre algorithm. We can see that the
new ordering of operations is always more e�cient that the standard algorithm, with a scale from 1 to
5.
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Figure 3.7.1: Speedup of the new ordering of operations compared to the standard Faugère-Lachartre

3.8 Parallel Implementation and Scalability Issues

Our parallel implementation di�ers from the original one in the way the parallel operations are carried
out. In the original Faugère-Lachartre, the operations Trsmi and Axpyi are performed at the same
time, reducing a block as soon as all the needed blocks to reduce this one are ready. In out implemen-
tation, the Trsm, Axpy and Gauss operations are applied in parallel but separately; this is motivated
by the fact that our Gauss step is now parallel and operates on the lines of the matrix rather than
columns of blocks.

3.8.1 Generalities on Trsm and Axpy parallelization

The Trsm andAxpy steps of the Faugère-Lachartre algorithm are basically very easy to parallelize since
there is no dependency between the columns of the matrices B and D. However, achieving scalability
of the algorithm is a very complicated task even without data dependency. Indeed, problems like cache
inconsistency and false sharing are the most challenging parts on any parallel problem. In the table
3.8 we show the speedup achieved on the Trsm step using a di�erent number of threads (we omit some
measures sometimes, marked with �-� in the table).
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Table 3.8: Speedup of parallel Trsm with di�erent number of threads

matrix 2 threads 4 threads 8 threads 12 threads 16 threads

Minrank 996/mat3 1.98 3.67 7.12 7.25 7.48
Minrank 996/mat4 1.84 3.85 7.14 7.39 7.44
Minrank 996/mat5 1.71 3.75 7.34 7.04 7.40
Minrank 996/mat6 1.79 3.71 7.35 7.45 7.36
Minrank 996/mat7 1.83 3.67 7.29 7.45 7.32

Mr10/mat2 1.99 3.83 7.43 - 7.63
Mr10/mat3 2.01 3.94 7.47 - 7.50
Mr10/mat4 1.98 3.87 7.51 - 7.46
Kat16/mat7 - 3.55 6.81 - -
Kat16/mat8 - 3.64 6.96 - -
Kat16/mat9 - 3.94 7.66 - -

We can see that the best speedup is achieved by 8 threads; using more threads does not bring any
more speedup bene�t.

We suspect that the cache is the main raison behind this; while blocks of A are read only and can
be shared by the threads, the columns of B are not. Indeed, each thread uses the blocks of a column
block Bi fetching data into the cache as needed. When the block B[i][j] is reduced, a row r from the
block B[i][j − 1] is fetched into the cache, it is used only while reducing this block and not reused till
all the other blocks in the same column below j are used. In the meantime, the other threads are also
fetching rows in the same way which causes the row r to be overridden in the cache. When a thread
needs the row r for the next block, it has to fetch it from the main memory again. We have tried to
minimize this phenomenon using nested parallelism.

3.8.2 Nested parallelism

We have tried limiting the problem of poor reutilization of the cache using nested parallelism. The idea
is that while threads reduce the columns Bi in the Trsm step for example, the Axpyblock operation
itself is now performed by several threads rather than only one. Indeed, in the Axpyblock algorithm
(c.f. 1.12), if the rows i1 and i2 of the blockA have a non-zero entry at the same column index j, then
the rows B[i1] and B[i2] are reduced by the same row B[j]. To that end, if the rows i1 and i2 were
reduced by two separate threads, then if the �rst threads fetched the row j to the cache, the second
can directly use it from the cache eliminating latencies.

We implemented this with OpenMP built-in nested parallelism, and using a thread pool.

OpenMp nested parallelism

OpenMP supports nested parallelism when two loops are nested and are both enclosed by a #pragma
parallel clause. By default nested parallelism is disabled with OpenMP and some implementation do
not even support it. To enable nested parallelism, the OMP_NESTED environment variable must be
set or else a call to omp_set_nested() has to be made from the code.

Following is an example of nested parallelism with OpenMP:

1 omp_set_dynamic ( 0 ) ;
2 #pragma omp p a r a l l e l num_threads (2 ) {
3 #pragma omp p a r a l l e l num_threads (2 ) {
4 do_stuf f ( ) ;
5 }
6 }
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In the inner #pragma omp parallel section, the function would be called 4 times, 2 times by a pair
of threads belonging to the same team.

In our code, the outer loops of the Axpyblock and Trsmblock algorithms were marked as parallel
using #omp pragmas (the code of the functions was inlined in the outer Trsm, Axpy functions).
Unfortunately, using OpenMP's nested parallelism didn't bring more e�ciency to our parallel imple-
mentation; it even did slow it up on 8 threads where the speedup was at its peak level. After inspection
with the intel vtune pro�ler [8] we have discovered that OpenMP creates and destroys threads as the
inner loops �nishes execution, this introduced great overhead where most of the time was spent on
thread creation and destruction.

Using a thread pool

To avoid OpenMP's thread creation and destruction when nested parallelism is used, we decided to
try a thread pool where threads are created at the beginning of the computation and then they keep
waiting for tasks to perform. The tasks are put on a shared message queue. Threads keep probing the
queue for available tasks, once a task available, a thread fetches it and executes the given task; it then
checks the queue again and so on.

In our parallel Trsm algorithm for example, master threads handle columns of B, and in the inner
loop (the call to Axpyblock and Trsmblock) they simply put a task on the queue for the threads in the
thread pool to perform. This can be described in the following pseudo-code:

for ( int i =0; i<nb_block_columns_B) do in p a r a l l e l
for ( j =0; j<nb_block_rows_B)

queue . add ( reduce task o f b lock B[ i ] [ j ] , s t a r t from 0 to block_heigt /2)
queue . add ( reduce task o f b lock B[ i ] [ j ] , s t a r t from block_heigt /2 to block_heigt )

In the above code, the master threads assign the reduction of each block to 2 threads by pushing
the corresponding tasks. This should indeed eliminate the overhead introduced by thread creation and
destruction as in the OpenMP case. As with nested parallelism with OpenMP, this method didn't
provide much e�ciency neither. Under more inspection with intel vtune pro�ler, it was clear that
threads synchronization was very important: the threads would endure a context switch each time
they can't access to the queue or when the queue is empty. A thread pool synchronization over the
queue with spinlocks could possibly eliminate the overhead of context switching.

We have used Ronald Kriemann's C++ thread-pool implementation [9] based on posix threads.

3.9 Memory utilization

One of the major goals of our implementation is to reduce the memory footprint of the program as
much as possible while assuring the best possible e�ciency.

As we have noted in 3.3.1, LELA's implementation is not e�cient when it comes to memory
utilization. In fact, to achieve better performance with LELA, one has to represent matrices' elements
over the double data type consuming 4 times more memory than if the elements were represented
over 16 bits. Considering memory utilization always, another drawback of LELA's implementation is
that the temporary sub-matrices used (A, B, C, D, D1, D2, B1 and B2) are not freed unless the
computations are done. Moreover, all the aforementioned sub-matrices are represented in dense format
except for A which is represented as sparse matrix.

On the other hand, the original implementation of Sylvain Lachartre [1] uses a technique close
to an arena allocator: at the start of the program, a big memory chunk is reserved and all the
computations are performed inside the allocated memory. This has the bene�t of eliminating dynamic
allocations/deallocations overhead during the program's execution. While this technique can lead to
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more performance, it has the drawback that the needed memory must be set before the program starts,
implying one has to know the amount of memory required or giving the program more memory than
what it needs. On the other hand, the memory reserved by the program is not released unless the
computations are completed, even if a big part of it is not used at some point, which can prevent other
programs from running correctly.

In our implementation we have considered releasing memory as soon as it is not useful anymore.
For instance, during the decomposition step of the sub-matrices A, B, C and D, the original matrixM0

is of no use anymore since all the data resides in the sub-matrices now; to this end, out implementation
releases the memory of M0 as it is copied to sub-matrices. Another case is when the Trsm step is
completed, the sub-matrix A can be released immediately since it has no use after that. In the same
way, after the Axpy step, the sub-matrix C can be freed since it is equivalent to 0. In our hybrid
implementation involving block matrices and multiline matrices, this becomes very practical since
when copying a matrix from one representation to another, the original one is released on the go.

All our allocations/deallocation are done through the standard malloc/free functions, or using
posix_memealign when aligned memory is needed (c.f. 3.1). One di�culty in achieving a perfect
smooth memory management is memory fragmentation: for example, if the rows of a matrix A are in-
terleaved in memory with those of B, then freeing A would not necessarily free it's underlying memory
since B is still occupying the memory pages where A was mapped. Notice that the matrix decomposi-
tion process causes this fragmentation unless the memory of sub-matrices is allocated separately which
would require two passes: one for analysis and allocation and the second for the actual decomposition.

Besides releasing memory on the go, our new method that uses the new ordering of operations
on echelon forms computations has a relatively less memory footprint than the standard Faugère-
Lachartre algorithm in addition to being more e�cient. This is due to the fact that the sub-matrix
B becomes denser after the Trsm step (generally doubles its density); this step is never performed
with the new method which means that the memory of B does not increase throughout the program
lifetime.

3.9.1 Distributed parallel processing of big matrices

When the size of the matrices becomes very important (from dozens of gigabytes to even several
terabytes), performing the Gaussian elimination on a single machine becomes infeasible. One way to
achieve this is through distributed computing. Each node would be assigned the matrix A which is
generally sparse and hence have a small size (with a density from less than 1% to ~5%) and a column
of blocks Bi to perform the Trsm step and a blocks' column Di for the Axpy step. A master node
can perform the decomposition process ahead, or else all the nodes can perform the decomposition
process locally and keep only the data they are assigned to use. Generally the decomposition process's
running time is minimal compared to the actual Axpy, Trsm operations.

The table 3.9 shows the proportion of the running time of each step of the Faugère-Lachartre
algorithm compared to the total running tume.

The decomposition process in our implementation as shown in the table 3.9 takes generally from
1% to 4% of the time, which means that each node can perform this step separately in a distributed
environment. The reconstruction in our implementation takes more time on sparse matrices as shown
in the case of the katsura 16 matrices. Our Indexer is not very optimized which means that these
times can be reduced even further.

Memory utilization of the new implementation vs the original implementa-
tion

We show in the table 3.10 the amount of memory used by our implementation and the original im-
plementation of Sylvain Lachartre. Considering our implementation, we show the memory usage of
the standard Faugère-Lachartre method and the memory usage of the new method with the modi�ed
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Table 3.9: Running time of the di�erent steps of Faugère-Lachartre

matrix density decomposition Trsm Axpy Gauss reconstruction

Minrank

996/mat3
32.84% 1.06% 77.13% 19.51% 0.62% 1.47%

Minrank

996/mat4
27.43% 1.13% 88.06% 9.01% 0.13% 1.51%

Minrank

996/mat5
24.07% 1.18% 93.54% 3.43% 0.02% 1.60%

Mr10/mat2 48.68% 2.70% 25.91% 52.77% 16.10% 2.09%

Mr10/mat3 35.54% 1.62% 37.25% 50.40% 8.54% 1.92%

Kat16/mat5 1.40% 3.29% 71.89% 6.59% 2.64% 14.21%

Kat16/mat6 1.24% 2.55% 73.99% 7.79% 3.40% 11.10%

ordering of operations. For Lachartre's original implementation, the minimum required amount of
memory allocated is shown along with the actual memory used during the computations.

Table 3.10: Memory utilization in MB of the new sequential implementation vs the original Lachartre's
version

matrix
new implementation Lachartre's version

new method standard

method

reserved

memory

actual used

memory

Minrank

996/mat3
1469 1683 2048 2289

Minrank

996/mat4
2793 3005 4096 4701

Minrank

996/mat5
4565 5568 8192 7637

kat13/mat7 466 1402 1024 806
kat13/mat8 498 1417 1024 883
Kat16/mat10 8433 33130 16384 15012

From table 3.10, we can see that our new method implementation has a less memory footprint
than the original implementation of Sylvain Lachartre on dense matrices (Minrak996 and Mr10).
However, on sparse matrices (Katsura problems) our implementation of the standard method has a
larger memory footprint; this is due to the fact that when decomposing the matrices, the rows of blocks
of A and B are interleaved, the same happens with those of C and D (no prior separate allocation
is made) which makes deallocations useless since the memory pages are still occupied all along the
program's lifetime. We can notice however that the new ordering of operations uses less memory than
both our implementation of the standard method and the original Lachartre's version.

Note: the memory footprint of our implementation can be reduced to the half. Indeed, at the
reconstruction step, our program doubles its memory usage which means that it doesn't succeed in
releasing the memory on the go during this step. This must be investigated more, since it can reduce
the memory usage of our implementation easily by 50%. The �gure 3.9.1 shows the evolution of the
memory usage during the program's lifetime.
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Figure 3.9.1: Memory utilization with time

We can see clearly how the memory grows starting with the reconstruction step. To avoid this,
a more rigorous memory allocation strategy must be considered in our Indexer in order to avoid
fragmentation when decomposing/reconstructing matrices.
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Conclusion and future work

In this report we have presented the Faugère-Lachartre method for computing row echelon forms and
reduced row echelon forms for matrices issued from Gröbner bases computations. After presenting
the standard Gaussian and Gauss-Jordan elimination algorithms, we have shown how the Structured
Gaussian Elimination method can be very e�cient compared to the naïve methods by taking advantage
of the reduced writing memory area. A detailed description of the Faugère-Lachartre method then
followed, where we discussed the block version of the algorithm and the parallelization of its overall
steps.

The modi�cations to the standard Faugère-Lachartre to �t with our multiline data structure were
then discussed in the contributions part. We introduced a new parallel algorithm for the structured
Gaussian elimination method and proposed a new ordering of operations for the Faugère-Lachartre
algorithm that outperforms the standard implementation in both CPU performance and memory usage.

The performance of the implementation and the e�cient use of memory were the main goals of
this internship. We demonstrated how we achieved the best performance in our implementation by
making use of the multiline data structure and the blocks decomposition of matrices which allowed an
intuitive parallelization of most of the parts of the algorithm. The new ordering of operations is then
detailed where we showed that this new method is indeed more e�cient compared to the standard one.
The memory footprint of our implementation is then investigated by comparing it with the Lachartre's
original version; we showed that the new method is always more e�cient on memory usage compared
to both Lachartre's version and our implementation of the standard method. We also discussed brie�y
the possibility of distributing the computations in case of very large matrices.

Although our implementation of Faugère-Lachartre can be 300 times faster than a naïve Gaussian
elimination, more enhancements are required in order to achieve the best performance and memory
e�ciency; we list in what follows the basic points to address in a future improvement of our imple-
mentation:

� Memory management: as we have mentioned in 3.9.1, during the reconstruction step, the memory
is almost doubled which means that our Indexer is not able to release memory at this step, �xing
this would require that the allocation of the sub-matrices be separated in di�erent memory areas.

� Along the previous point, assuring a better memory allocation for the standard implementation
which is not very e�cient concerning memory usage especially on relatively sparse matrices.

� Investigating scalability issues for the parallel implementation.

� Implementing a more �ne-grained version of our parallel structured Gaussian elimination algo-
rithm 2.2.

� Considering developing a distributed version which should not require a lot of code refactoring
compared to our parallel implementation.

� Our implementation seems to have a strange behavior on very sparse matrices (c.f. Appendix A)
(of density less than 5% as in some matrices of the Katsura n problem); we notice a clear drop
in performance over these matrices. This should be investigated further to identify the possible
reasons.
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� The decomposing/reconstruction steps can be greatly improved in the sequential version. These
steps are also partially parallelized which means they can be optimized further by more paral-
lelism.

� Considering the use of more e�cient memory management libraries that are shown to have better
performance than malloc, especially on multithreading programs, like TC malloc from Google
or Threading Building Blocks from intel.
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Appendix A

Experimental Results and comparisons

with existing Faugère-Lachartre

implementations

Row echelon form computation

We show in the following tables the running time (in seconds) of computing a row echelon form 1 of
matrices from di�erent types of problems. Our implementation is marked as �New program.� We list
the timings of the new method we have proposed and the timings of the standard Faugère-Lachartre
along with their corresponding parallel versions when the running time relatively long. We compare
these timings with Lachartre's original implementation (sequential and parallel).

For running time comparisions with LELA's implementation, refer to 3.3.1.

The �gure A.0.1 shows the speedup achieved by our implementation using the new ordering of
operations compared to Lachartre's original implementation. The measures are made on the total
running time required to solve each problem. We notice that our implementation outperforms the
original version on most of the problems, except Katsura 11 and Katsura 12 which are very small
compared to the rest of the problems.

1Notice that this is not a reduced row echelon form
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Figure A.0.1: Speedup of the new implementation of Faugère-Lachartre (using the new ordering of
operations) compared to Lachartre's original implementation

matrix
New program Lachartre's

versionNew

method

Old

method

mat1 0.01 0.02 0.01

mat2 0.14 0.18 0.11

mat3 0.76 0.76 0.52

mat4 2.21 2.28 1.33

mat5 2.75 3.22 1.96

mat6 4.03 3.80 2.79

mat7 2.91 3.13 2.15

mat8 1.24 1.86 1.33

mat9 0.37 1.28 1.09

mat10 0.14 1.00 0.95

Total 14.56 17.53 12.24

Table A.1: Katsura 11
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matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 0.00 0.00 0.73 0.00 0.01 0.44 0.01 0.01 1

mat2 0.03 0.02 1.46 0.07 0.04 1.91 0.04 0.01 4.00

mat3 0.36 0.13 2.74 0.85 0.30 2.80 0.45 0.10 4.50

mat4 0.47 0.25 1.87 2.56 0.95 2.70 1.39 0.31 4.48

mat5 3.27 0.95 3.45 9.92 2.55 3.89 5.72 1.14 5.02

mat6 36.26 6.28 5.77 53.49 11.90 4.49 33.14 6.32 5.24

mat7 109.80 18.98 5.79 167.30 33.67 4.97 117.04 21.69 5.40

mat8 1.97 3.12 0.63 31.56 8.04 3.93 19.97 4.15 4.81

mat9 66.51 13.58 4.90 148.60 31.29 4.75 96.42 18.65 5.17

mat10 97.22 18.32 5.31 230.80 45.17 5.11 144.28 26.87 5.37

mat11 75.83 16.16 4.69 250.50 50.28 4.98 142.95 26.10 5.48

mat12 37.21 9.20 4.04 245.60 49.75 4.94 135.13 24.66 5.48

mat13 14.31 6.96 2.06 232.80 50.52 4.61 129.93 23.79 5.46

mat14 7.45 5.27 1.41 229.30 47.57 4.82 129.25 23.51 5.50

mat15 6.17 4.51 1.37 224.00 47.11 4.75 128.59 23.53 5.46

Total 456.86 103.74 4.40 1827.36 379.15 4.82 1084.31 200.83 5.40

Table A.2: Katsura 14

matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 0.00 0.00 0.73 0.01 0.01 0.94 0.01 0.01 1

mat2 0.05 0.03 1.63 0.12 0.06 1.86 0.07 0.01 7.00

mat3 0.85 0.23 3.69 1.62 0.70 2.31 0.84 0.18 4.67

mat4 1.33 0.54 2.44 6.22 1.78 3.49 3.21 0.72 4.46

mat5 5.34 1.53 3.50 22.67 5.54 4.09 12.14 2.51 4.84

mat6 120.10 21.41 5.61 171.20 34.32 4.99 105.89 19.48 5.44

mat7 306.10 49.05 6.24 550 105.50 5.21 312.10 52.68 5.92

mat8 506.10 85.65 5.91 851.90 159.40 5.34 373.07 74.73 4.99

mat9 12.06 8.06 1.50 376 82.86 4.54 188.03 34.60 5.43

mat10 690.90 114.30 6.04 1336 245.50 5.44 539.47 104.71 5.15

mat11 644.80 107.10 6.02 1734 301.60 5.75 586.23 115.46 5.08

mat12 425.80 79.68 5.34 1778 322.70 5.51 616.35 111.36 5.53

mat13 174.80 42.99 4.07 1647 311.30 5.29 551.98 106.14 5.20

mat14 59.86 23.76 2.52 1605 304.20 5.28 536.08 103.53 5.18

mat15 29.14 23.82 1.22 1568 291.30 5.38 558.17 99.86 5.59

mat16 23.44 19.71 1.19 1565 299.10 5.23 532.53 101.44 5.25

Total 3000.67 577.86 5.19 13212.73 2465.87 5.36 4916.16 927.41 5.30

Table A.3: Katsura 15
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matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 0.00 0.01 0.38 0.01 0.02 0.49 0.00 0.00 #DIV/0!

mat2 0.06 0.06 1.08 0.18 0.08 2.29 0.09 0.02 4.50

mat3 1.19 0.49 2.44 3.67 0.87 4.23 1.64 0.33 4.97

mat4 2.18 0.78 2.79 12.85 2.72 4.73 6.13 1.34 4.57

mat5 9.80 2.55 3.84 54.98 10.88 5.05 27.74 5.43 5.11

mat6 47.56 9.24 5.15 180.90 34.54 5.24 114.42 20.88 5.48

mat7 1164 185.40 6.28 1533 257.70 5.95 774.07 150.05 5.16

mat8 1158 186.50 6.21 1778 287.70 6.18 813.49 163.15 4.99

mat9 3,512 633 5.55 7573 1078 7.03 3028.35 616.88 4.91

mat10 30.54 22.92 1.33 1378 245.80 5.61 659.93 130.44 5.06

mat11 4350 685.20 6.35 9795 1460 6.71 3649.61 713.34 5.12

mat12 4920 848.70 5.80 10290 1528 6.73 3212.97 625.13 5.14

mat13 3823 624.20 6.12 11600 1689 6.87 3228.08 624.19 5.17

mat14 2384 410.90 5.80 11470 1695 6.77 3008.39 581.88 5.17

mat15 788.30 170.20 4.63 10970 1608 6.82 2859.91 548.89 5.21

mat16 241.70 87.59 2.76 10680 1594 6.70 2768.60 527.52 5.25

mat17 104.70 71.94 1.46 10620 1569 6.77 2758.06 526.58 5.24

mat18 83.14 69.03 1.20 10600 1581 6.70 2745.39 517.85 5.30

Total 22620 4008.71 5.64 98539.59 14642.3 6.73 29656.87 5753.90 5.15

Table A.4: Katsura 16

matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 6.18 1.08 5.70 6.24 1.25 4.98 6.40 6.32 1.01

mat2 19.06 3.51 5.43 22.81 4.01 5.68 18.41 3.65 5.04

mat3 66.69 11.10 6.01 101.30 16.38 6.18 84.38 12.97 6.51

mat4 166.60 28.20 5.91 280.90 43.84 6.41 250.25 39.02 6.41

mat5 317.10 52.22 6.07 571.60 85.40 6.69 496.52 78.06 6.36

mat6 530.80 82.27 6.45 1114 165.80 6.72 1010.39 168.36 6.00

mat7 548.10 86.48 6.34 1466 214.20 6.84 1447.38 246.16 5.88

mat8 295.10 53.91 5.47 1399 200.50 6.98 1475.26 223.58 6.60

mat9 143 27.87 5.13 1307 190.70 6.85 1413.65 204.41 6.92

mat10 65.78 17.28 3.81 1254 185.10 6.77 1376.96 199.09 6.92

mat11 34.85 12.68 2.75 1232 182.40 6.75 1398.04 194.79 7.18

mat12 24.85 14.08 1.76 1228 181.90 6.75 1341.77 192.75 6.96

mat13 22.26 10.52 2.12 1225 181.30 6.76 1390.76 195.59 7.11

Total 2240.37 401.21 5.58 11207.85 1652.78 6.78 11710.17 1764.75 6.64

Table A.5: Minrank Minors (9, 9, 6)
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matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 67.01 12.37 5.42 72.64 11.63 6.25 52.62 51.54 1.02

mat2 168.50 27.73 6.08 210.10 33.97 6.18 174.27 35.84 4.86

mat3 384.40 59.54 6.46 658.70 99.45 6.62 552.58 94.66 5.84

mat4 1018 154.90 6.57 1662 238.50 6.97 1445.49 241.06 6.00

mat5 1647 246.60 6.68 2732 386.10 7.08 2404.22 388.06 6.20

mat6 2228 333.10 6.69 3134 452.60 6.92 2656.08 497.38 5.34

mat7 2679 387.50 6.91 3257 466.00 6.99 2733.10 689.12 3.97

mat8 1735 259.50 6.69 1955 281.80 6.94 1667.11 580.84 2.87

mat9 577.20 83.28 6.93 625.70 88.03 7.11 543.82 172.05 3.16

mat10 72.16 11.35 6.36 80.21 12.57 6.38 63.57 21.73 2.93

mat11 9.16 1.96 4.66 10.13 2.02 5.02 8.56 3.26 2.63

mat12 0.97 0.24 3.97 1.08 0.29 3.67 0.86 0.40 2.15

mat13 0.10 0.06 1.66 0.10 0.04 2.54 0.08 0.04 2.00

mat14 0.01 0.01 1.05 0.01 0.01 1.02 0.001 0.01 0.3

mat15 0.001 0.001 0.48 0.001 0.001 0.46 0.001 0.02 0.04

mat16 0.001 0.001 0.32 0.001 0.001 0.36 0.001 0.001 1

Total 10586 1578 6.71 14398.67 2073 6.95 12302.36 2776.01 4.43

Table A.6: Minrank Minors (9, 11, 8) spec1

matrix

New program Lachartre's version

New method Old method

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

seq
parallel

(8)

speedup

seq /

parallel

mat1 30.9 7.16 4.31 31.61 6.66 4.75 24.06 23.64 1.02

mat2 104.7 18.32 5.72 131.9 22.57 5.84 102.91 24.32 4.23

mat3 318.7 50.24 6.34 535.9 82.15 6.52 489.95 73.61 6.66

mat4 1007 157.70 6.39 1778 264.20 6.73 1722 278.95 6.17

mat5 1898 284.90 6.66 3675 531.60 6.91 3387.1 678.60 4.99

mat6 4466 654.60 6.82 8231 1162 7.08 7461.61 1381.08 5.40

Total 7825.30 1172.92 6.67 14383.41 2069.18 6.95 13187.63 2460.20 5.36

Table A.7: Mr10
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matrix
New program Lachartre's

versionNew

method

Old

method

mat1 0.02 0.04 0.02

mat2 0.33 0.41 0.27

mat3 2.44 2.70 1.62

mat4 9.99 8.31 6.23

mat5 20.63 18.06 13.14

mat6 26.40 22.85 17.06

mat7 27.59 24.50 17.90

mat8 16.11 19.23 12.31

mat9 6.05 9.44 7.33

mat10 1.54 6.47 5.26

mat11 0.51 6.47 4.36

Total 111.61 118.48 85.50

(a) Katsura 12

matrix
New program Lachartre's

versionNew

method

Old

method

mat1 0.02 0.04 0.02

mat2 0.16 0.39 0.21

mat3 0.94 2.13 1.27

mat4 3.54 7.70 5.33

mat5 8.41 17.13 12.55

mat6 12.65 31.56 20.53

mat7 11.67 34.59 26.81

mat8 7.20 34.96 27.92

mat9 3.15 33.66 26.83

mat10 1.74 33.62 26.43

mat11 1.45 38.01 26.38

Total 50.92 233.80 174.28

(b) Katsura 13
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