
Parallel Gaussian Elimination for Gröbner bases
computations in finite fields

Jean-Charles Faugère
INRIA, Paris-Rocquencourt Center, SALSA Project

UPMC, Univ Paris 06, LIP6
CNRS, UMR 7606, LIP6
UFR Ingénierie 919, LIP6

Case 169, 4, Place Jussieu, F-75252 Paris
Jean-Charles.Faugere@inria.fr

Sylvain Lachartre
Thales Communications - Laboratoire Chiffre

160, boulevard de Valmy
92700 Colombes

Sylvain.Lachartre@fr.thalesgroup.com

ABSTRACT
Polynomial system solving is one of the important area of Com-
puter Algebra with many applications in Robotics, Cryptology, Com-
putational Geometry, etc. To this end computing a Gröbner basis
is often a crucial step. The most efficient algorithms [6, 7] for
computing Gröbner bases [2] rely heavily on linear algebra tech-
niques. In this paper, we present a new linear algebra package for
computing Gaussian elimination of Gröbner bases matrices. The
library is written in C and contains specific algorithms [11] to com-
pute Gaussian elimination as well as specific internal representa-
tion of matrices (sparse triangular blocks, sparse rectangular blocks
and hybrid rectangular blocks). The efficiency of the new software
is demonstrated by showing computational results fr well known
benchmarks as well as some crypto-challenges. For instance, for a
medium size problem such as Katsura 15, it takes 849.7 sec on a
PC with 8 cores to compute a DRL Gröbner basis modulop < 216;
this is 88 faster than Magma (V2-16-1).

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algorithms: Algebraic algorithms; F.2.2 [Theory of
Computation]: Analysis of algorithms and problem complexity—
Non numerical algorithms and problems: Geometrical problems
and computation; D.4.6 [Software]: Operating Systems—Security
and Protection: Cryptographic controls

General Terms
Algorithms.

Keywords
Polynomial systems solving, Gröbner bases, Gaussian Elimination,
High Performance Linear Algebra, Cryptography, Multi-core Pro-
gramming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010,21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
The most efficient algorithms [6, 7] for computing Gröbner bases

[2] rely heavily on linear algebra techniques. More precisely, the
main cost in Gröbner bases computation is the Gaussian reduction
of matrices constructed from polynomials of the ideal generated by
the input equations. The matrices generated by these algorithms
have unusual properties: sparse, almost block triangular and not
necessary full rank. Moreover, most of the pivots are known at the
beginning of the computation.

Unfortunately, althoughM4RI [1] has good performances inF2,
the best linear algebra packages such asATLAS [13], LinBox [4],
FFLAS-FFPACK [5] or Sage [12] are very efficient for dense lin-
ear algebra, but not tuned forF4/F5 matrices in word-size prime
fields. In [11], we have presented a dedicated efficient algorithm
for computing Gaussian elimination of such matrices. The main
idea consists in decomposing the initial matrix in four submatrices
obtained from both lists of pivot and non pivot rows and columns,
and to treat them specifically. To benefit as much as possible from
the cache memory, each matrix is split into small blocks and the
reduction relies on three elementary block operations. To deal with
the specific structures of the matrices occurring in a Gröbner basis
computation we distinguish three block formats: sparse triangular
blocks, sparse rectangular blocks and hybrid rectangular blocks (the
internal representation can be sparse or dense, in adequation with
the eventual rows densification occurring during the computation).
At the end of this paper we report some timings and speedup to
show the efficiency of the new library and to compare with existing
linear algebra packages.

2. GRÖBNER BASES AND LINEAR ALGE-
BRA

Notions about Gröbner bases and how to compute them using
linear algebra are not described here (see [3, 6, 7] for instance).

A list of polynomials[f1, ∙ ∙ ∙ , fs] can be represented by a matrix
as follows: columns correspond to all the monomials occurring in
the polynomials (sorted with respect to a monomial ordering), and
each row contains coefficients of a polynomial with respect to these
monomials. Theleadingcoefficient of a row denotes the column
index of its first non zero coefficient.






f1 = ∑k
i=1 α1,i mi

f2 = ∑k
i=1 α2,i mi

...
fs = ∑k

i=1 αs,i mi

−→









m1 m2 . . . mk
f1 α1,1 α1,2 . . . α1,k
f2 α2,1 α2,2 . . . α2,k
...

...
...

...
...

fs αs,1 αs,2 . . . αs,k









To summarize, a Gröbner basis computation can be seen as a
sequence of Gaussian eliminations of such matrices. In the next
section, we present a new Gaussian elimination algorithm in which
operations are performed in a different order. For that purpose, two
types of columns in the matrix are distinguished:pivot columns(in
which a row has its leading term), andnon pivot columns. Similarly,
a non null row chosen to reduce others is called apivot row. The
column pivot set(resp.row pivot set) is the set of all pivot column
(resp. row).

The new algorithm use three elementary matrix operations:

• Trsm1 : Y← X−1Y,

• Axpy2: Y← AX+Y,

• Gauss : classicalGaussian elimination.

2.1 Structure of the matrices
The matrices occurring in the Gröbner basis computation have

the following common properties:

• sparse: in degreeδ a shift of a homogeneous degreed poly-
nomial with n variables has less than

(n+d−1
d

)
non zero co-

efficients for
(n+δ−1

δ
)

total columns. For instance, ifd = 3,
n = 5 andδ = 10, then the average density for this line is
about 3.5%),

• several rows are monomial multiples of the same polynomial
f : (m1 f , m2 f , . . . , mk f),

• the matrices are not necessary full rank (this is the main dif-
ference betweenF4 andF5).

• almost block triangular: each matrix is constructed by pair-
wise combinations from a set of polynomials with distinct
leading terms (S-polynomial), to exhibit new polynomials
with new leading terms.

The last point provides the predetermination of a part of the pivot
columns. The efficiency of our new algorithm rely on this knowl-
edge.

3. SKETCH OF THE SEQUENTIAL ALGO-
RITHM

This algorithm has been introduced in [11] and it takes into con-
sideration sparsity and almost block triangular shape, with different
treatments and representations for the preselected pivot rows and
columns, and the other ones. It inputs an0×m0 matrix M0 and
performs its Gaussian elimination.

3.1 Analysis
The first stage consists in looking for columns clearly identified

as pivot. For that purpose, it is enough to sweep the row leading
terms. The list of the corresponding columns indices is calledCpiv,
and is of sizeNpiv. Then, one pivot row is chosen from several
candidates (in fact all the rows which have the same leading index),
to obtain the listRpiv, also of lengthNpiv : the coordinates of the
i-th pivot will be

[
Rpiv[i],Cpiv[i]

]
. The list of non pivot rows (resp.

columns) isdenotedRpiv (resp.Cpiv).

1Trsm: TRiangular Solve with Multiple right-hand sides
2Axpy: "A X plus Y"

3.2 Decomposition into submatrices
M0 can be decomposed in 4 submatricesA, B, C, D using the row

and column pivot lists:

• A is made from the elements indexed byRpiv andCpiv (upper
triangularNpiv×Npiv matrix with diagonal coefficients equal
to 1).

• B of dimensionsNpiv× (m0−Npiv) contains the elements in-
dexed byRpiv andCpiv.

• C is a (n0−Npiv)×Npiv matrix built from the elements in-
dexedby Rpiv andCpiv. Its rows are sorted by increasing
leading term indices and with leading coefficient equal to 1.

• D is obtained from the(n0−Npiv)× (m0−Npiv) remaining
elements (indexedby Rpiv andCpiv).

Figure 1 shows these four submatrices with their respective di-
mensions.

B

C D

A Npiv

m0−NpivNpiv

n0−Npiv

Figure 1: ABCD decomposition

3.3 Pivot row reduction (Trsm)
The third step of the algorithm consists in reducing the pivot rows

by themselves. From linear algebra point of view, this means com-
putingB← A−1B sinceA is non singular (upper triangular with 1s
on the diagonal). This operation is a basis change for the non pivot
columns: it computes their expression in the vector space gener-
ated by the pivot columns. Each submatrix is treated differently:A
is only read so it remains sparse, whereas the matrixB is accessed
in read/write mode, so its density may increase. WhenB is a dense
matrix, this computation can be made "in place" to save memory.
At this step, the matrixM0 is equivalent to:

M0 ∼

(
Id A−1B
C D

)

3.4 Non pivot rows reduction (Axpy)
Once the pivot rows are reduced, the non-pivot rows must be

reduced by these new pivot rows by computingD← D−CB (here
B denotes thenewmatrix B← A−1B) andC is set to zero, since all
its coefficients are reduced by those ofA. M0 is now equivalent to
(wrt. initial matricesA, B, C andD):

M0 ∼

(
Id A−1B
0 D−CA−1B

)

3.5 New pivot row computation (Gauss)
At this point, all the rows ofM0 have been reduced by pivot rows.

The next step is to look and find new pivots in the matrixD, with a
Gaussian elimination(row version of the classical and well-known
algorithm): D← Gauss(D). Note that the leading terms ofD are
not necessary equal to 1 anymore, and some field inversions may
be further required. Now:

M0 ∼

(
Id A−1B
0 Gauss(D−CA−1B)

)

3.6 Reconstruction
At last, the final matrix Gauss(M0) is reconstructed from rows

and pivots listsRpiv andCpiv, and from new matricesB andD.

REMARK 1. The final matrix is not in row reduced echelon form.
To obtain rre f(M0) a second iteration of this new algorithm must
be applied (see [11] for details) : the last step (3.5) gives two new
lists of pivot rows and columns (so a new decomposition and the
Trsm and Axpy steps can be performed once again before recon-
structing the final rref matrix).

4. PARALLEL IMPLEMENTATION
OperationsonCpiv columns are independent, so they can be per-

formed in parallel. In this section, we present the data structures we
used to implement a parallel version of the new algorithm.

4.1 Data structures
We take into account the architecture with last generation pro-

cessors, while respecting the structure of matrices fromF4/F5 algo-
rithms. To benefit from the cache processor memory, and to main-
tain an optimal stream of data, matrices are reorganized by row and
column blocks. We use three block matrix formats :sparse, dense
andhybrid (rows are stored in sparse or dense format according to
their density). Moreover, three blocks sizes have to be fixed:

• KAB (resp. KArl): row and column block (resp. incomplete
block) size of matrixA (common block size of columns ofA
andC, and rows ofB),

• KCX (resp.KCrl): row block (resp. incomplete block) size of
matricesC andD,

• KBY (resp.KBrc): column block (resp. incomplete block) size
of the matricesB andD,

whereKArl , KCrl andKBrc are the dimensions of incomplete blocks,
respectively equal to:






KArl ≡ Npiv modKAB,
KCrl ≡ n0−Npiv modKCX,
KBrc ≡ m0−Npiv modKBY.

Before giving a more formal description, figure 2 presents the
global block layout: the numbered blocks in matrices and the dot-
ted arrows of a block inner row symbolize the storage order of the
elements in the memory.

......
... ...

KArl

K

KArl ABK KBY KBrc

KCrl

AB

KCX

... ...

A2,1

A1,1

A2,2

A3,3 A3,2 A3,1 B1,3

B1,1 B2,1

B1,2 B2,2

B2,3 B3,3

B3,2

B3,1

C1,3

C2,3 C2,2

C1,2 D1,1C1,1

C2,1

D2,1

D1,2 D2,2

D3,1

D3,2

BA

DC

Figure 2: Matrices A, B, C and D block division

4.2 Block inner operations
This section deals with operations within a block. We distinguish

three block formats:

1. Sparse triangular block format: applies to triangular blocks
of the matrixA. It uses three lists:Aval, Apos andAnb, which
represent respectively the values, the positions and the num-
ber of non zero elements in each row of the matrixA. El-
ements as well as rows are sorted by increasing order, from
bottom to top. Row leading coefficients (equal to 1) and the
last row of the block are not stored.

2. Sparse rectangular block format: this is the format of the rect-
angular blocks of matricesA andC. Three lists are also nec-
essary to store the value, the position and the number of non-
zero elements of each row in the block. Rows are sorted by
decreasing order, from bottom to top. For the blocks ofA, the
positions of the non-zero elements are decreasing, from right
to left, while forC, these are written in increasing order, from
left to right.

3. Hybrid rectangular block format: used for the blocks of ma-
trices B and D. Rows are stored inhybrid format: their repre-
sentation is sparse or dense, according to the number of non-
zero elements. Rows are ordered by decreasing indices, from
bottom to top, while the row elements by growing indices,
from left to right.

The layout of blocks in matrices is one of the following three
formats:

1. Block format of sparse triangular matrix:uses sparse trian-
gular and sparse rectangular blocks. Blocks are ordered by
rows from right to left, and from bottom to top. Rectangular
blocks haveKAB rows while triangular blocks haveKAB−1

rows (since the leading coefficients, always equal to 1, are
not stored).

2. Block format of sparse rectangular matrix:only containsrect-
angular sparse blocksstored by rows. The block layout is the
same that thesparse triangular matrixformat.

3. Block format of hybrid rectangular matrix:consists of hybrid
rectangular blocks ordered from top to bottom, and from left
to right.

EXAMPLE 1. To illustrate each one of these three formats, we
present three matrices A, B and C of dimensions n×m with block
size K and density threshold d (for better legibility, a zero row or
column is represented by the the empty set/0 for value and posi-
tion, and 0 for the number). For hybrid blocks, athreshold density
d is chosen to determine whether a row has a sparse or a dense
representation (ie. if the density is greater than the threshold):

• Sparse triangular blockmatrix format n= m= 5, K = 2:

A =








1 5 2 0 0
0 1 4 8 3
0 0 1 6 0
0 0 0 1 7
0 0 0 0 1








Aval 7 6 3 8 4 /0 2 5

Apos 1 2 1 2 1 /0 1 2

Anb 1 1 2 1 0 2

• Sparse rectangular blockmatrix format, n= 3, m= 5 and
K = 2:

C =




8 6 1 9 0
4 0 0 5 0
7 0 0 2 3





Cval 3 2 5 /0 7 4 9 1 6 8

Cpos 1 2 2 /0 1 1 2 1 2 1

Cnb 2 1 0 0 1 1 1 2 1

• Hybrid rectangular blockmatrix format, n= 5, m= 3, K = 2
and d= 50%:

B =








0 2 5
4 0 0
7 1 0
0 0 3
6 8 0








Bval 6 8 7 1 4 2 3 /0 5

Bpos /0 1 2 /0 /0 /0

Bnb 2 0 2 1 1 0 1 0 0 1

This ordering is in perfect adequacy with thedouble spacial and
temporal principle(see [13] for example) and so, benefits from the
cache memory(small and fast memory taking advantage of two
principles : a program is more likely to spend its time executing
code around the same set of instructions, and tend to run in loops
repeating the same instructions).

Algorithm 1 performsB←A−1Bbetweensparse triangular block
A and hybrid rectangular blockB (D← D−CB block algorithm
follows the same philosophy). It uses a dense temporary row de-
notedTemp (rows must be converted from hybrid to dense format
when copying rows fromB to Temp, and from dense to hybrid for-
mat when updatingB from Temp). Sparse or dense linear algebra
(Axpy) is used according to the density of hybrid rows ofB.

Algorithm 1 : B← A−1B: block "hybrid" version
Inputs : sparse triangular blockblockA

hybrid rectangular blockB
Output : hybrid rectangular blockB = A−1 B
Local : Temp is am0−Npiv temporary dense row
Notation: X[i,∗] is the i-th row ofX ∈ {A,B}

/* A rows loop */
for i← Npiv−1 to 1 do1

/* Hybrid format to dense format */
Temp← Hybrid2Dense(B[i,∗])2

/* A i-th row loop (Anb[i]−1 elements) */
for j ← 2 to Anb[i] do3

Av← Aval[i, j], Ap← Apos[i, j]4

if Density(B[Ap,∗])≤ Thresholdthen5

/* Sparse : Temp← Temp−Av∗B[Ap,∗] */
Temp← SparseAxpy(Temp,Av,−1,B[Ap,∗])6

else7
/* Dense : Temp← Temp−Av∗B[Ap,∗] */
Temp← DenseAxpy(Temp,Av,−1,B[Ap,∗])8

/* Dense format to hybrid format */
B[i,∗]← Dense2Hybrid(Temp)9

return B10

4.3 Block outer operations
The outer operations are performed on matrix blocks: each oper-

ationB← A−1B andD← D−CB usesblock hybridalgorithms. It
is also possible to use a temporary dense block to store the results
of the partial block products.

4.4 Block hybrid Gaussian elimination
The search of new pivots (see 3.5) has to be adapted to theblock

hybridformat of the matrixD (Gauss algorithm operating onhybrid
blocks). Here, the Gaussian elimination is performed on successive
blocks (by increasing indices) of the new matrixD obtained in 3.4.
A #Rpiv×#Rpiv matrix P, equivalent to apseudo inverse, is intro-
duced to keep a track of the successive row operations. In the i-th
stage, the i-th blockDi is updated by left-product byP, and then
Gaussian elimination is performed onDi | P (Di concatenated with

P), from rows of indices greater than the partial rankr(i)
D . Note that

a temporary block is used to store the rows ofDi andP which have
to be reduced.

Initially, P is equal to the identity matrix. The Gaussian reduction
of the first block concatenated withP is computed. Then, in the i-th
stage, the i-th block is updated by a simple left matrix multiplication

by P, and then, the a Gaussian reduction is performed on this block
concatenated withP. We denotenz(i) the number of non-null rows
in the i-th blockDi . Identically, r(i)

D is the rank of the i-th block
after Gaussian elimination.

On figure 3, the matrix is represented after the reduction of the
first block and has "nz(1)" non-null rows. After the first Gaussian
block reduction, the first block contains the up-triangular matrix of

rank r(1)
D . The nz(1) first rows of P contain the linear operations

needed by the Gaussian reduction of the first block.

...

Temp

DK−1D2 DK P(2)D1

r
(1)
D

nz(2)
nz(1)

Figure 3: Gaussian block reduction

Then, the non null rows from index
(

r(i)
D +1

)
of D2 and ofP

are copied in the temporary block. Finally, the temporary block is
reduced by Gaussian elimination, and the submatrices are updated.

The temporary rank is then denotedr(2)
D .

This process is iterated to obtain the Gaussian reduction of the
matrix, which final rank is denotedrD. Therefore, rank(M0) =
Npiv + rD. The efficiency relies on the numberNpiv (trivial piv-
ots inM0): if #Rpiv = n0−Npiv is small with respect ton0, the cost
of this hybrid Gaussian block elimination is negligible both in time
and memory, comparing to the whole process cost.

Algorithm 2 present this hybrid Gaussian algorithm. The func-
tion FistNonZeroRow(l ,M) returns the index of the first non-null
row in the listl of rows of the matrixM. The functionUpdate(Temp)
copies the temporary rows of Temp in the corresponding rows ofDi
andP in a hybrid format. At the end of this algorithm, both matrices
P and Temp can be freed from memory.

4.5 Parallelization
During the computation ofB← A−1B thus D ← D−CB, the

operations on the columns of matricesB and D are independent.
They can be realized in parallel. For that purpose, matricesB and
D must be considered from columns blocks point of view (notedBi
andDi), and the two elementary parallelizable operations are:

• Trsm(i): inputs the block indexi and outputs

Bi ← A−1Bi ,

• Axpy(i): inputs the block indexi and outputs

Di ← Di −CBi .

The hybrid Gaussian elimination algorithm is applied toDi (de-
notedGauss(i)) to search for new pivots (after both previous re-
ductions).

During the whole process, Gaussian elimination must be per-
formed as soon as possible. So, we define priority rules between

Algorithm 2 : Block hybrid Gaussian elimination
Input : Block hybrid matrixD (dimensionnD×mD).
Outputs: Block hybrid matrixGauss(D) and its rankrD.

/* Init parameters */

P← IdnD , r(1)
D ← 0, N← dmD/KBYe1

/* D blocks loop */
for i← 2 to N−1 do2

nz(i)← FirstNonZeroRow({r(i−1)
D +1, . . . ,nD},Di)3

Temp← Gauss
(
SubMatrix

(
{nz(i−1), . . . ,nz(i)},Di |P

))

4

r(i)
D ← r(i−1)

D +Rank(Temp)5
(Di ,P)← Update(Temp)6

/* Last block of D */

Temp← Gauss
(
SubMatrix

(
{r(N−1)

D +1, . . . ,nD},DN

))

7

rD← r(N−1)
D +Rank(Temp)8

DN← Update(Temp)9

return D andrD10

the three operationsTrsm, Axpy and Gauss. Four priority con-
straints and synchronization points (denotedSi for i from 1 to 4)
are introduced for the parallel algorithm (see figure 4):

• S1 (from Analysis to Trsm): no constraint of synchroniza-
tion,

• S2 (from Trsm to Axpy): to computeAxpy(i), the computa-
tion of Trsm(i) must be completed,

• S3 (from Axpy to Gauss): to process the reductionGauss(i),
Axpy(i) must be completed as well as the operationGauss(j)
for j between 1 andi−1,

• S4 (from Axpy step to the reconstruction step): all the opera-
tions of typeAxpy must be completed.

To keep track of all the operations on reduced blocks by each
of the operations, the list of remaining tasks is shared by all pro-
cessors.During its update, we make sure that no other processor
has access to thiscritical section. For that purpose, we useMutex
(MUTual exclusion). Algorithm 3 presents a way of parallelizing
the computation in order to lower the latency. It uses four lists:

• Function: list of the three block operations (Trsm, Axpy and
Gauss),

• Todo: list of the lists of not treated yet block indices for each
of the three functions,

• Done: list of the block indices for which the three operations
have been performed,

• Pr: list of priorities of each function (since Gauss is sequen-
tial, it must be computed as soon as possible, so its priority is
1 and the priority of Axpy is 2; Trsm is the function with less
priority).

This algorithm is executed by all the threads and ends when the
blocks of all the matrices have been treated by the three opera-
tions. At the beginning of the while loop, the thread looks for a task
(searching first in the most priority list – ie. Todo3, then Todo2,
etc – and denotingind = TodoPr[i] this block index), locks the mu-
tex to update Todo (ie. removeind from Todo[i] : the chosen task
has no longer to be treated by the other threads), and performs the

D1 D2 DK−2 DK−1 DK

D1 D2 DK−2 DK−1 DK
...

...

C

A B B BB B1 2 K−2 K−1 K

Analysis

...

Trsm

Axpy

Gauss

Reconstruction

S

S

3

2

1

4

S

S

Figure 4: New Gaussian algorithm (parallel version)

computation Function[i](ind). If i ≤ 2, ind is added to the next list
Todo[i +1], else theind-th block is added to Done (nothing to do
with it anymore). Then, the thread goes on until all the blocks have
been treated by the three operations.

5. PRACTICAL EXPERIMENTS
We have implemented a small finite field version (Fp with 3≤

p ≤ 65521) of this new algorithm in C language (approximately
15000 lines of code) using POSIX threads.

5.1 Comparison with existing linear algebra
packages

First, we compute the row echelon form (in [11] we have also
described aRref algorithm to compute a row echelon form of ma-
trix) of small matrices occurring in some Gröbner bases applica-
tions. We compare the computations inF65521 with several linear
algebra tools: Maple 13 (functionRowReduce from LinearAlge-
bra and Modular packages), Magma 2.16.1 (functionNullspace-

OfTranspose on sparse matrices), Sage 3.0.5 (echelon_form on
sparse matrices) and Linbox 1.1.6 (rowReducedEchelon on Sparse-
Matrix), on the six matrices:

Name Dimension Density Rank

robot 404×302 12.39% 262
katsura7 694×738 7.44% 611

f855 2456×2511 2.78% 2331
cyclic8 4562×5761 9.37% 3903

katsura12 18285×19607 10.50% 15810
cyclic9 72552×93913 0.70% 71872

The tests are run on a pc with two Intel Xeon E5420 processors

Algorithm 3 : Parallel Gaussian algorithm
Inputs : matricesA, B, C andD
Outputs : matricesB andD after reduction
Notations: Todo: lists of blocks to be treated by functions,

Pr: list of function priorities.

Todo← [[1, . . . ,K], [], []], Done← []1
Function← [Trsm,Axpy,Gauss], Pr← [3,2,1]2

/* Something to do */
while Done6= [1, . . . ,K] do3

/* search a task from high to low priority */
for i← 1 to 3 do4

if TodoPr[i] 6= [] then5

Lock()6
ind← TodoPr[i][1]7
TodoPr[i]← TodoPr[i]\[ind]8
Unlock()9

/* The computation is performed */
Function[i](ind)10

Lock()11
if i ≤ 2 then12

/* Next operation must be performed on
this block */

TodoPr[i+1]← Sort(TodoPr[i+1] ∪ [ind])13
else14

/* All the operations are done */
Done← Done∪ [ind]15

Unlock()16

(with four 2.5 GHz cores each), and 6 Go of RAM, and obtain the
following table (MT refers to the case of amemory trash):

Name New Maple Sage Magma Linbox
(version) library (13) (3.0.5) (2.16.1) (1.1.6)

robot <0.1 6.4 2.4 <0.1 <0.1
katsura7 <0.1 40.8 20.92 0.2 0.2

f855 <0.1 841.2 257.11 3.3 4.3
cyclic8 1.8 > 105 > 105 54.9 33.0

katsura12 28.5 MT MT 1036.81 1166.8
cyclic9 46.6 MT MT MT MT

Although these matrices are sparse, for Maple and Sage dense
linear algebra is more efficient. OurRref version is more efficient
(wrt. to memory and time) than the other tools.

At last, the results of the parallel version of the new algorithm
using POSIX threads:

Seq. Thread number /SpeedUp
Name (s) 1 2 4 8 12

cyclic8 1.8 1.0 1.8 3.1 4.7 4.4
cyclic9 46.6 1.0 1.9 3.4 5.7 5.4

Note that with two threads, latency periods are almost null, both
processors are used at full capacity. The best real times are obtained
with eight threads using the eight cores of the machine. However,
sequential hybrid last blocks computations and/or bus memory en-
gorgement prevent from optimal performances.

5.2 Comparison with existing Gröbner bases
tools

All the timings given in this section are in elapsed seconds and
are obtained using our library on a 64 bit Intel Xeon CPU X5570
@ 2.93GHz with 8 cores.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Katsura 15 (modulo p)
Speedup FGb/New Library

Fig.5.2: relative speedup for the Katsura 15 problem overF65521
(the abscissa corresponds to the stage of the GB computation and the ordinate to the speedup).

The goal now is to try to estimate the real speedup that we can
achieve using the new library. In contrast with the previous sub-
section we have thus to perform Gaussian elimination on several
matrices. To start with a well known benchmark we run our new
library on the Katsuran problem [10]: since this system is a set
of n quadratic equations we know that we have to performn+ 1
Gaussian eliminations (this is the Macaulay bound for regular sys-
tems). In figure 5.2, we compare the new implementation with our
reference library FGb. The conclusion is that the new library is al-
ways more efficient than the original implementation in FGb except
for the last two computations: in that cases the matrices arequasi-
triangular(triangular with few more rows) the new algorithm is not
optimal (the cost ofTrsm is too important with respect to a classical
Gaussian elimination performed in FGb). The same phenomenon
occurs for the steps 3 and 4 and that is why the speedup decreases.

In the current state of the implementation we have to devise
the following strategy: by default to perform Gaussian elimination
we call the new library except when the matrix isquasi-triangular
(there is a threshold to find). When the matrix isquasi-triangular
we call the old sequential implementation. Note that in practice the
previous restriction is not a big deal: the CPU needed to perform
Gaussian elimination on the first/last matrices occurring in the com-
putation is negligible compared with the total CPU time. In the rest
of the paper, we assume that we always apply this strategy.

5.2.1 Katsura modulop
We present here the detailed results of the Katsuran problems

for n from 13 to 16. In some table we also include a comparison
between the sequential version of the library (New Seq Library)
and the 8-cores version of the library (New Seq Library (8)).
All the timings are in seconds.

Dimension FGb
New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New(8)

1042 x2135 0.02 0.01 2.00 0.0 2.4
3827 x6207 0.29 0.06 4.83 0.3 4.7

10014 x14110 2.10 0.33 6.36 1.8 5.2
19331 x25143 9.30 1.27 7.32 7.6 6.0
28447 x35546 23.36 2.87 8.14 18.1 6.3
34501 x42315 36.38 4.5 8.08 29.4 6.4
38165 x46265 34.79 5.78 6.02 38.0 6.5
39590 x47768 19.28 5.94 3.25 38.7 6.5
39965 x48156 5.90 5.65 1.04 36.3 6.4
40035 x48227 1.08 1.08 1.00 35.5 6.3
40042 x48234 0.07 0.07 1.00 35.4 6.3

Total 191.69 27.56 6.96
Katsura 13 modulo 65521 with 8 cores

Dimension FGb
New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New(8)

1333 x2804 0.04 0.01 4.00 0.05 4.8
5559 x9032 0.63 0.11 4.50 0.65 5.9

11683 x18005 0.52 0.36 1.33 1.8 5.0
21717 x30783 5.85 1.31 4.50 7.7 5.8
39001 x50484 93.65 7.11 13.12 49.9 6.7
67933 x82582 322.19 27.42 12.08 182.85 5.8
70411 x85376 218.69 21.46 10.33 141.4 6.6
81277 x97202 332.68 30.72 10.99 215.4 7.0
86547 x102826 258.66 30.64 8.58 208.5 6.8
88417 x104786 105.31 28.18 3.76 189.3 6.7
88874 x105257 28.70 26.92 1.08 176.5 6.6
88954 x105338 4.72 4.72 1.00 175.1 6.6
88962 x105346 0.32 0.32 1.00 175.2 6.7

Total 1881.29 180.68 10.55
Katsura 14 modulo 65521 with 8 cores

Dimension FGb
New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New(8)

1667x3608 0.05 0.01 6.00 0.1 8.8
7312x12257 1.40 0.21 6.43 1.2 5.6
17248x26575 2.05 0.82 2.46 4.6 5.6
32109x46154 9.36 2.85 3.25 17.3 6.1
60801x79831 289.77 23.39 12.33 177.4 7.6

114563x140832 830.56 62.93 13.17 422.8 6.7
142062x170248 1454.32 85.78 16.92 558.2 6.5
170221x201111 2351.63 121.5319.26 858.9 7.1
187664x219868 2275.85 142.2315.87 865.1 6.1
195325x227973 1513.69 127.6 11.75 871.4 6.8
197778x230530 533.53 129.95 4.06 790.8 6.1
198335x231102 133.15 115.03 1.14 760.1 6.6
198426x231194 20.40 20.40 1.00 729.8 6.5
198434x231202 1.25 1.25 1.00 738.6 6.5

Total 11948.14 849.68 14.06
Katsura 15 modulo 65521 with 8 cores

Steps Dimension FGb New library(8)
SpeedUp
FGb/New

1 271 x968 0 0
2 2048 x4565 0.08 0.02 4.00
3 9953 x16839 2.58 0.38 6.79
4 23290 x36757 3.86 1.50 2.57
5 45844 x67046 18.70 6.25 2.99
6 83046 x114252 108.55 23.96 4.53
7 160426 x204782 3326.63 186.06 17.88
8 175286 x214892 3822.91 194.53 19.65
9 328980 x385905 11295.82 700.92 16.12
10 373624 x432524 16441.15 890.49 18.46
11 401429 x464523 19090.29 733.58 26.02
12 426807 x491659 15294.66 728.41 21.00
13 437603 x503003 8912.21 867.45 10.27
14 440754 x506273 3035.39 622.11 4.88
15 441423 x506958 603.01 595.60 1.01
16 441525 x507061 84.23 84.23 1.00
17 441534 x507070 4.84 4.84 1.00

Total 103180.96 5687.29 18.14
Katsura 16 modulo 65521 with 8 cores

We can deduce from the previous table that the new library is
very efficient. Better results can still probably obtained since we
have sometimes a maximal speedup of 26 and sometimes a much
lower speedup.

5.2.2 Minrank
The Minrank problem is a fundamental linear algebra problem

(generalisation of the eigenvalues problem) as was studied recently
in Cryptology [8] or in Computer Algebra [9]. In that case, the
polynomial system is a list of polynomials of degree 4.

Steps Dimension FGb New library(8)
SpeedUp
FGb/New

1 441 x2002 0.47 0.17 2.76
2 1676 x4231 0.70 0.10 7.00
3 3657 x7058 2.06 0.31 6.65
4 5089 x8985 4.54 0.53 8.57
5 6204 x10265 4.88 0.85 5.74
6 6594 x10700 2.06 0.87 2.37
7 6720 x10835 0.63 0.63 1.00
8 6753 x10869 0.14 0.14 1.00
9 6758 x10874 0.02 0.02 1.00

Total 28 3.62 7.73
Minrank (9,7,4) with 8 cores

Steps Dimension FGb New library(8)
SpeedUp
FGb/New

1 784 x5005 3.89 0.07 2.76
2 3145 x10201 7.43 0.68 5.99
3 6989 x16880 24.25 2.44 7.01
4 11160 x23270 51.36 4.88 6.94
5 14947 x28344 96.73 10.72 6.31
6 17421 x31313 109.04 15.52 5.54
7 18420 x32477 52.34 15.59 2.85
8 18810 x32912 20.08 15.52 1.11
9 18936 x33047 5.92 5.92 1.00
10 18969 x33081 1.3 1.3 1.00
11 18974 x33086 0.14 0.14 1.00

Total 512.32 72.78 7.04
Minrank (9,8,5) with 8 cores

Dimension FGb
New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New(8)

784 x5005 3.89 0.07 2.76 1.7 1.4
3145 x10201 7.43 0.68 5.99 3.9 5.9
6989 x16880 24.25 2.44 7.01 17.1 7.1
11160 x23270 51.36 4.88 6.94 35.7 7.4
14947 x28344 96.73 10.72 6.31 83.1 7.9
17421 x31313 109.04 15.52 5.54 123.0 8.0
18420 x32477 52.34 15.59 2.85 122.7 8.0
18810 x32912 20.08 15.52 1.11 119.6 7.7
18936 x33047 5.92 5.92 1.00 116.5 7.9
18969 x33081 1.3 1.3 1.00 108.3 7.6
18974 x33086 0.14 0.14 1.00 115.4 7.8

Total 512.32 72.78 7.04
Minrank (9,8,5) with 8 cores

Dimension FGb
New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New(8)

1296 x11440 25.26 7.19 3.51 0.0 1.3
5380 x22400 55.48 4.16 13.34 23.1 5.6
12224 x36784 225.41 14.74 15.29 106.9 7.3
21066 x52502 567.18 46.77 12.13 322.2 6.9
30519 x67094 1119.4 91.61 12.22 643.8 7.0
38109 x77687 1724.84 192.08 8.98 1436.6 7.5
43162 x84027 1808.62 259.87 6.96 2071.4 8.0
45441 x86801 956.11 245.61 3.89 1953.4 8.0
46440 x87965 420.85 264.91 1.59 1813.8 6.8
46830 x88400 154.03 154.03 1.00 1732.6 7.8
46956 x88535 45.79 45.79 1.00 1697.6 7.2
46989 x88569 10.03 10.03 1.00 1695.2 5.8
46994 x88574 1.11 1.11 1.00 1673.5 7.5

Total 8757.62 1337.90 6.55
Minrank (9,9,6) with 8 cores

Even if the new library is less efficient on this example than for
the Katsuran problem we observe a non linear speedup for huge
computations. The 8-core version is also always 6 to 8 times more
efficient than the sequential version showing that the parallelization
of the algorithm is quite efficient.

5.2.3 Comparison with Magma 2.16.1
We compare now our new algorithm with a recent version of the

F4 implantation in Magma.

F4 Kat11 F4 Kat12 F4 Kat 13

Magma 19.5 151.2 1091.4
FGb 40.6 342.6 2550.65

New library 2.85 19.45 149.6

F5 Kat 12 F5 Kat 13 F5 Kat 14

Magma 151.2 1091.4 9460.35
FGb 32.8 191.7 1881.3

New library 4.6 27,6 180,7

6. CONCLUSIONS AND PERSPECTIVES

We have shown a parallelized algorithm to perform Gaussian
elimination in in order to compute efficiently Gröbner bases. We
have applied our implementation on real size and difficult problems
(for instance the Minrank problem in Cryptology). Hence our ap-
proach is very effective for computing Gröbner bases on a multicore
PC. Some work is still necessary to obtain a maximal speedup and
to decrease the memory requirement of the new library.

Acknowledgements: The authors would like to thank Olivier
Orcière for his helpful remarks.

7. REFERENCES
[1] M. Albrecht and G. Bard.The M4RI Library – Version

20090409. The M4RI Team, 2009.
[2] B. Buchberger. An Algorithmical Criterion for the

Solvability of Algebraic Systems.Aequationes
Mathematicae, 4(3):374–383, 1970. (German).

[3] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties, and
Algorithms : An Introduction to Computational Algebraic
Geometry and Commutative Algebra. Springer, 7 1997.

[4] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. Saunders, W. J. Turner, and
G. Villard. Linbox: A Generic Library For Exact Linear
Algebra, 2002.

[5] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense Linear Algebra
over Word-Size Prime Fields: the FFLAS and FFPACK
Packages.ACM Trans. Math. Softw., 35(3):1–42, 2008.

[6] J.-C. Faugère. A New Efficient Algorithm for Computing
Groebner bases (F4). Journal of Pure and Applied Algebra,
139(1-3):61–88, 1999.

[7] J.-C. Faugère. A new efficient algorithm for computing
Groebner bases without reduction to zeroF5. In Proceedings
of the ACM SIGSAM International Symposium on Symbolic
and Algebraic Computation, 2002.

[8] J.-C. Faugère, F. Levy-dit Vehel, , and L. Perret.
Cryptanalysis of Minrank. In D. Wagner, editor,Advances in
Cryptology CRYPTO 2008, volume 5157 ofLecture Notes in
Computer Science, pages 280–296, Santa-Barbara, USA,
2008. Springer-Verlag.

[9] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer.
Computing Loci of Rank Defects of Linear Matrices using
Gröbner Bases and Applications to Cryptology. In S. Watt,
editor,ISSAC ’10: Proceedings of the 2010 international
symposium on Symbolic and algebraic computation, New
York, NY, USA, 2010. ACM.

[10] K. Katsura. Theory of spin glass by the method of the
distribution function of an effective field.Progress of
Theoretical Physics, 87:139–154, 1986. Supplement.

[11] S. Lachartre.Algèbre linéaire dans la résolution de systèmes
polynomiaux Applications en cryptologie. PhD thesis,
Université Paris 6, 2008.

[12] W. Stein et al.Sage Mathematics Software (Version 3.3). The
Sage Group, 2009.http://www.sagemath.org.

[13] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
Empirical Optimization of Software and the ATLAS Project.
Parallel Computing, 27(1–2):3–35, 2001. Also available as
University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

